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Abstract— System modeling and parameter identification of
micro aerial vehicles (MAV) are crucial for robust autonomy,
especially under highly dynamic motions. Visual-inertial-aided
online parameter identification has recently seen research atten-
tion due to the demanding of adaptation to platform configura-
tion changes with minimal onboard sensor requirements. To this
end, we design an online MAV system identification algorithm
to tightly fuse visual, inertial and MAV aerodynamic informa-
tion within a lightweight multi-state constraint Kalman filter
(MSCKF) framework. In particular, while one could blindly
fuse the MAV dynamic-induced relative motion constraints in
EKF, we numerically show that due to the (quadrotor) MAV
system modeling inaccuracy, they often become overconfident
and negatively impact the state estimates. As such, we leverage
the Schmidt-Kalman filter (SKF) for MAV system parameter
identification to prevent corruption of state estimates. Through
extensive simulations and real-world experiments, we validate
the proposed SKF-based scheme and demonstrate its ability to
perform robust system identification even in the presence of an
inconsistent MAV dynamic model under different motions.

I. INTRODUCTION

Micro aerial vehicles (MAV) have continued to become
miniaturized with increased maneuverability due to improved
thrust-to-weight ratios [1]–[6]. Accurate state estimation and
system identification of MAV platforms (e.g., geometric,
inertial, and aerodynamic parameters) remain at the forefront
of autonomous robotic research because of the challenges
of high speed, under-actuation, and platform variability.
As such, visual-inertial navigation systems (VINS), which
estimate the state by fusing information from an inertial
measurement unit (IMU) and aiding camera sensor(s), have
seen significant research efforts due to their efficiency,
complementary sensing nature, light-weight and low cost
[7]. In particular, EKF-based visual-inertial odometry (VIO)
methods remain promising thanks to their ability to deploy
on resource-constrained MAV platforms [8]–[10].

VIMO [11] and VID-fusion [12] investigated the tightly-
coupled fusion of MAV dynamic information and visual-
inertial measurements by extending VINS-Mono [13], which
is a sliding-window optimization framework. These methods
require synchronized IMU and rotor encoder measurements
to preintegrate the two into a single relative motion con-
straint, which may cause estimator inconsistency due to the
re-use of inertial information. In addition, while they did not
perform online parameter identification to handle variations,
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they did show that the MAV dynamics could improve VIO
performance by modeling external force and pre-calibrated
system parameters.

MAV system parameter identification plays an essential
role in many control tasks [14], [15]. These parameters can
change throughout a MAV’s trajectory and be influenced
by environmental effects. Therefore, traditional CAD models
[16], static tests [17], or offline calibration [18], [19], cannot
satisfy many autonomous MAV deployments. Burri et al.
[18] showed the ability to offline estimate MAV parameters
while relying only on onboard sensors. Online concurrent
parameter identification is appealing for specific scenarios,
e.g., the payload or attachment location changes [20].

Online MAV system identification methods can be cate-
gorized into two classes: (i) loosely-coupled methods which
perform a secondary optimization problem separate from the
navigation state estimation, and (ii) tightly-coupled methods
where state estimation and parameter identification are per-
formed within a single estimator. Wüest et al. [21] proposed
an online loosely-coupled filter-based method which evolved
the state forward using the MAV dynamics and updated
using IMU and resulting pose from a VIO or other odometry
solution. No rotations between the IMU, MAV body, and
center of mass were modeled, and the thrust and moment
aerodynamic coefficients were not estimated in this work.
Recently, Böhm et al. [22] extended the work to estimate
all MAV system parameters and performed observability
analyses to determine what parameters are recoverable given
the rotor speed, IMU, position, and/or pose measurements.
However, these methods reuse rotor speed information which
might lead to inconsistent estimation solutions and introduce
an additional unmodeled source of error.

In contrast, we consistently estimate the system parameters
by incorporating the MAV dynamics with visual-inertial
measurements, avoiding re-use of information, relaxing addi-
tional sensor requirements, and rejecting measurements that
do not follow the expected dynamics (e.g., an external gust of
wind). Additionally, after carefully investigating the potential
model errors of MAV dynamics, we leverage the Schmidt-
KF (SKF) update for robust parameter identification, which
tracks all the correlations between the visual-inertial state and
system parameters in a tightly-coupled manner. Specifically,
the main contributions of this paper include:

• A tightly-coupled lightweight MSCKF-based estimator
is developed for state estimation and parameter identi-
fication with the MAV dynamic-induced measurements,
which incorporate the platform’s geometric, inertial, and
aerodynamic parameters.

• A robust real-time SKF formulation of parameter iden-
tification is proposed to accurately determine system
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parameters even with a simplified MAV dynamic model
while retaining consistent visual-inertial state estimates.

• The proposed method is validated with Monte-Carlo
simulations based on a self-designed simulator and the
real-world Blackbird UAV dataset [23], shown to be
able to perform accurate and robust online MAV system
identification.

II. MAV DYNAMICS AND ITS INTEGRATION

The frame of references for the MAV system is illustrated
in Fig. 1. The MAV states xM

1 and system parameters xθ

are defined as:

xM =
[
M
G q̄⊤ Gp⊤

M
Mω⊤ Gv⊤

M

]⊤
(1)

xθ =
[
x⊤
D x⊤

G x⊤
MI

]⊤
(2)

where:

xD =
[
ct cm

]⊤
(3)

xMI =
[
I
M q̄⊤ Ip⊤

M

]⊤
(4)

xG =
[
m M j⊤ Mp⊤

B

]⊤
(5)

where M
G q̄ is the unit quaternion representing the rotation

M
G R from the global frame {G} to the MAV center of mass
frame {M} [24], Mω is the angular velocity of in {M},
and GpM and GvM are the MAV position and velocity in
{G}, respectively. The aerodynamic parameters, xD, consist
of the rotor thrust coefficient ct and moment coefficient cm.
The geometrical parameters, xG, include the mass of the
platform m, moment of inertial MJ, which is a diagonal
matrix defined in frame {M} with M j being its diagonal
terms. MpB represents the translation between the geometric
body frame {B} and {M}.

A. MAV Force and Moment

The total force MF and moment MM of a MAV with Nr

rotors are defined as [18]:

MF =

Nr∑
i=1

M
Ai
RAiFi (6)

MM =

Nr∑
i=1

(
M
Ai
RAiM+ ⌊MpAi

⌋MFi

)
(7)

where MpAi = M
B RBpAi +

MpB denotes the translation
between rotor {Ai} and center of mass frame {M}, which
is typically known from the CAD model. Assuming the rotor
encoder measurements rm,i from the i-th rotor is defined as
rm,i = ri + nr,i with nr,i represents the white Gaussian
noise, the individual force AiFi and moment AiMi from
rotor {Ai} are approximated as [21]:

AiFi = ct(rm,i − nr,i)
2ez + nf,i (8)

AiMi = cm(rm,i − nr,i)
2λiez + nm,i (9)

1Throughout this paper x̂ is used to denote the estimate of a random
variable x, while x̃ = x ⊟ x̂ is the error of this estimate. We define the
orientation error quaternion, δθ, as δq̄ = q̄⊗ ˆ̄q−1 ≃ [ 1

2
δθ⊤ 1]⊤ [24]. The

updated estimate from a correction δx is x̂⊕ = x̂ ⊞ δx.

{Ai}

{M}

{B}

{I}{G}

{C}

Fig. 1: Frame of references of a typical MAV system: i-th
rotor frame {Ai}, geometric body frame {B}, IMU frame
{I}, camera frame {C}, MAV center of mass frame {M},
and global frame {G}.

where λi ∈ {−1, 1} corresponds to the rotation direction of
the i-th rotor and ez = [0, 0, 1]⊤ is a unit vector along local
z direction. As discussed in detail in Sec. IV-A, rotor speed
can only measure along the local z-axis, thus, the additional
noises, nf,i and nm,i, are introduced to compensate for the
inadequacy of the MAV measurements.

B. MAV Dynamic Model

The MAV dynamics are defined with the force and mo-
ment models as:

M
G

˙̄q
GṗM
M ω̇
Gv̇M

 =


1
2Ω

(
Mω

)
M
G q̄

GvM
MJ−1

(
MM− ⌊Mω⌋MJMω

)
1
m

M
G R⊤MF− Gg

 (10)

where Ω(ω) =

[
−⌊ω⌋ ω
−ω⊤ 0

]
and ⌊·⌋ is the skew-symmetric

matrix; Gg = [0 0 9.81]⊤ denotes the gravity. This can be
summarized as:

ẋM = fM (xM ,xθ,nM ) (11)

where nM = [nr,1 · · ·nr,Nr
n⊤
f,1 · · ·n⊤

f,Nr
n⊤
m,1 · · ·n⊤

m,Nr
]⊤

contains all noises [see Eq. (8) and (9)] with covariance QM .
We can integrate this model from time tk to tk+1 based on
first-order approximation:

Mk+1

G R
GpMk+1

Mk+1ω
GvMk+1

 =


∆R⊤Mk

G R
GpMk

+∆p

∆R⊤ (
Mkω +∆ω

)
GvMk

+∆v

 (12)

with integration components derived as:
∆R

∆p

∆ω

∆v

 =


exp

((
Mkω + 1

2∆ω
)
∆t

)
GvMk

∆t+ 1
2

(
1
m

Mk

G R⊤MkF− Gg
)
∆t2

MkJ−1
(
MkM− ⌊Mkω⌋MkJMkω

)
∆t(

1
m

Mk

G R⊤MkF− Gg
)
∆t

 (13)

where ∆t = tk+1 − tk and exp(·) denotes the matrix
exponential [25]. We consider different sub-sets as:

• Full model: ∆R, ∆p, ∆ω and ∆v
• Pose model: ∆R and ∆p
• Orientation model: ∆R and ∆ω
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Therefore, the integrated discrete-time MAV dynamic model
and its linearization are derived as:

xMk+1
= gM (xMk

,xθ,nM ) (14)
x̃Mk+1

≃ ΦM x̃Mk
+Φθx̃θ +GnnM (15)

where ΦM is the linearized state transition matrix. Φθ and
Gn represent the Jacobians for xθ and nM , respectively.
Detailed derivations can be found in our technical report [26].

III. MSCKF-BASED PARAMETER IDENTIFICATION

We first extend the standard MSCKF-based estimator [27],
[28] to additionally estimate MAV system parameters as:

xk =
[
x⊤
A x⊤

θ

]⊤
, x⊤

A =
[
x⊤
Ik

x⊤
f x⊤

C

]⊤
(16)

where:

xIk =
[
Ik
G q̄⊤ Gp⊤

Ik
Gv⊤

Ik
b⊤
gk

b⊤
ak

]⊤
(17)

xf =
[
Gp⊤

f1 · · · Gp⊤
fn

]⊤
(18)

xC =
[
x⊤
Tk−1

· · · x⊤
Tk−c

]⊤
(19)

xTi
=

[
Ii
G q̄⊤ Gp⊤

Ii
Iiω⊤ Gv⊤

Ii

]⊤
(20)

We define the “active” state xA, and parameter state xθ [see
Eq. (2)]. The active state contains the current IMU state xIk ,
n temporal SLAM features xf , and c historical clone states
xC . Each historical clone contains the IMU pose, angular Iω
and linear GvI velocities [29]. bg and ba are the gyroscope
and accelerometer biases, respectively.

A. IMU Kinematic Model

The state evolves with the nonlinear IMU kinematics [30].
Integrating with incoming IMU linear accelerations, Iak, and
angular velocities, Iωk, we get:

xIk+1
= gI

(
xIk ,

Iak,
Iωk,nI

)
(21)

where nI = [n⊤
g n⊤

a n⊤
wg n⊤

wa]
⊤ contains zero-mean white

Gaussian noises and random walks of the IMU. We can then
linearize the nonlinear model and propagate the state and
covariance forward [27].

Remarks: We have made the conscious decision to propa-
gate the state forward with IMU measurements as compared
to use the MAV dynamics since IMU readings can fully
measure the platform’s trajectory evolution. Additionally,
we can leverage robust outlier gating tests to reject invalid
integrated MAV measurements caused by un-modeled forces.

B. Visual Feature Measurements

When exploring the environment, bearing observations
of static landmarks are tracked from images. A bearing
measurement seen at timestep k can be related to the state
by (simplified for presentation, model in [28] is used):

zC,k = h(xTk
,Gpf ) + nC,k =: Λ(Ckpf ) + nC,k (22)

Λ
(
[x y z]⊤

)
=

[
x/z y/z

]⊤
(23)

Ckpf = C
I R

Ik
G R(Gpf − GpIk) +

CpI (24)

where nC,k is the white Gaussian measurement noise. We
can obtain the visual residual based on Eq. (22):

rC,k = zC,k − h(x̂Tk
,Gp̂f )− nC,k (25)

≃ HTk
x̃Tk

+Hfk
Gp̃f − nC,k (26)

where HTk
and Hfk are the measurement Jacobians, x̃Tk

and
Gp̃f are the error states for the pose and feature, respectively.

After collecting enough measurements and “stacking”
the above linearized model, the feature can be used to
update the state. Features are either inserted into the state
vector and updated until lost, or used to directly update
the state by marginalizing the feature position through the
MSCKF nullspace projection [27], [31]. Consistency is en-
sured through first-estimate Jacobian techniques [32]–[34].

C. MAV Dynamic-Induced Measurements
We now present how to relate the integrated MAV dynamic

model, Eq. (14), to our estimation state, Eq. (16). Through
rigid body constraints we have:

xMk
= ht,k(xTk

,xθ) (27)
Mk

G R
GpMk

Mkω
GvMk

 =


I
MR⊤Ik

G R
GpIk + Ik

G R⊤IpM

M
I RIkω

GvIk + Ik
G R⊤⌊Ikω⌋IpM

 (28)

The MAV measurement residual and error-state Jacobians
are defined accordingly:

rM,k = x̂Mk+1
− gM (x̂Mk

, x̂θ,0) (29)
= ht,k+1(x̂Tk+1

, x̂θ)− gM (ht,k(x̂Tk
, x̂θ), x̂θ,0)

≃
[
HTk+1

HTk
Hθ

]
x̃k −GnnM (30)

≜
[
HA Hθ

]
x̃k −GnnM (31)

where x̃k = [x̃⊤
Tk+1

x̃⊤
Tk

x̃⊤
θ ]

⊤ ≜ [x̃⊤
A x̃⊤

θ ]
⊤ is the error

state. The Jacobians can be derived through the chainrule
[see Eq.(15)]:

HTk+1
=

∂ht,k+1

∂ xTk+1

, HTk
= −ΦM

∂ht,k

∂ xTk

(32)

Hθ =
∂ht,k+1

∂ xθ
−ΦM

∂ht,k

∂ xθ
−Φθ (33)

The detailed derivations are in our companion technical
report [26].

D. EKF Update
The standard EKF update corrects the state given either

camera measurements (Sec. III-B) or MAV dynamic-induced
measurements (Sec. III-C) as follows:

x̂⊕
k+1 = x̂k+1 ⊞Kr , P⊕

k+1 = Pk+1 −KSK⊤ (34)

where Pk+1 is the state covariance at time tk+1, and:

S = [HA Hθ]Pk+1[HA Hθ]
⊤ +R (35)

K = Pk+1

[
HA

Hθ

]
S−1 ≜

[
KA

Kθ

]
(36)

where KA and Kθ denote the Kalman gain for the xA and
xθ, respectively, and R is the measurement noise.
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TABLE I: Average RMSE and NEES over 50 Monte-Carlo runs for a set of σs for the nf and nm. VIO without MAV
dynamics had an RMSE of 0.782 degrees and 0.195 meters with a NEES of 2.230 and 2.744, respectively. Ideally, the NEES
should be 3. Bold-red values indicate estimate errors larger than the baseline VIO system.

σ RMSE Ori. (deg.) RMSE Pos. (m) NEES Ori. NEES Pos.
full pose ori full pose ori full pose ori full pose ori

0.03 2.806 1.271 3.468 52.589 0.202 0.309 1543.207 33.334 27.718 65.681 4.847 7.627
0.05 1.144 1.037 1.812 0.191 0.188 0.224 31.490 12.551 5.135 4.369 3.951 3.777
0.20 0.865 0.777 0.718 0.190 0.188 0.188 5.431 3.381 2.170 3.745 3.515 2.867
0.50 0.737 0.704 0.751 0.189 0.188 0.189 2.960 2.429 2.183 3.430 3.180 2.863
1.00 0.704 0.725 0.758 0.187 0.189 0.189 2.404 2.251 2.183 3.151 2.982 2.866
1.50 0.708 0.739 0.758 0.188 0.189 0.189 2.280 2.213 2.182 3.304 2.952 2.867

Fig. 2: Simulated trajectory for a quadrotor with total length
of 323 meters (left). Differences between the recovered force
MF from MAV dynamics and groundtruth force (right).

IV. NUMERICAL ANALYSIS OF MAV DYNAMICS

We have empirically discovered that blindly fusing the
dynamic-induced measurements within the estimator often
degrades the state estimation and thus parameter identifi-
cation performance. To understand this phenomena, in this
section, we numerically examine the model inaccuracy of the
MAV dynamic model (6)-(9) and how the tuning of noise
parameters nf,i and nm,i affects the system performance.
This analysis motivates the proposed SKF that will be
presented in Sec. V.

A. Demonstration of Model Inaccuracy

MAV rotor speeds can only be used to compute forces
along the rotor rotation (local z) axis [see Eq. (8)], the lateral
forces (on the local xy-plane of the rotor frame) cannot be
captured. Thus, the dynamic model cannot accurately recover
the complete 3D force for a MAV platform. The lateral
forces (on the local xy-plane of the rotor frame) cannot be
captured with rotor speed readings. This can be verified by
a “realistic” simulation using a quadrotor MAV equipped
with an IMU and a camera rig. The simulated MAV travels
along a trajectory (left of Fig. 2) generated by RotorS [35].
The detailed simulation configurations are introduced in Sec.
VI. The differences between the recovered force from MAV
dynamics MF [see Eq. (6)] and true force computed based on
the trajectory differentiation [see Eq. (44)] are shown in the
right of Fig. 2. While rotor speed can be used to accurately
model the force along the z-direction, there are large non-
zero differences along the xy-direction which confirms the
inaccuracy of the force model.

B. Noise Parameter Tuning for MAV Model

To compensate for the model inaccuracy, two additive
noise terms, nf,i and nm,i, are introduced in Eq. (8) and (9).
Since the total force and moment of the MAV system can be
easily affected by the motion and environmental conditions,
it is not trivial to decide what noise parameters best fit the
estimator.

We herein implement a set of Monte-Carlo experiments
to evaluate the system performances with different noise
sigmas. We tune the noise sigmas by designing a single noise
standard deviation σ related to our additive noise distribution
by: nf,i = [σ σ 1

10σ]
⊤ and nm,i = [ 1

10σ
1
10σ

1
10σ]

⊤.
Note that we consider smaller noise sigmas for the moment
and force z-axis, due to the fact that MAV dynamics can
relatively accurately model them. The average Root Mean
Squared Error (RMSE) [36] and Normalized Estimation
Error Squared (NEES) [37] are used to evaluate the accuracy
and consistency for the estimator, with all the results shown
in Table I. The standard VIO without MAV updates achieves
an average RMSE of 0.782 degrees and 0.195 meters, while
the average NEES are 2.230 and 2.744 for orientation and
position, respectively. All methods leverage the groundtruth
calibration, and thus the errors are from the MAV dynamic
model and measurements.

From Table I we note that the full model measurements
are able to improve the pose estimation accuracy by properly
tuning the noise parameters (as the case of σ = 1.00).
Incorporating MAV measurements with σ < 1.00 leads to
inconsistent estimation (with larger NEES), and substan-
tially hurts the system accuracy (red values indicate worse
accuracy than the benchmark VIO), and even causes the
estimated trajectory to diverge. In contrast, for σ > 1.00 the
system over inflates the MAV measurements and although
still consistent, the estimation accuracy slightly drops (see
full model with σ = 1.50).

Additionally, full, pose and orientation based updates
are evaluated (see Sec. II-B for definition). For smaller σ
(e.g., σ = 0.20), the full and pose updates easily degrade
performance. The orientation based update generally remains
consistent likely due to the platform moment being properly
modeled. Its downside is that not all parameters can be
calibrated (e.g., IpM , and the mass m). This can be seen
through inspection of Eq. (28) and (13). From these results,
we notice that the pose update achieves comparable accuracy
to the full update and both can identify all MAV parameters.
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TABLE II: Configuration parameters and prior distributions for simulation and the estimator.

Parameter Value Parameter Value Parameter Value Prior

IMU Freq. (hz) 200 BpA1
(m) 0.21, 0.00, 0.05 I

M q̄ 0, 0, 0, 1 2.86◦

Cam Freq. (hz) 10 BpA2
(m) 0.00, 0.21, 0.05 IpM (m) 0, 0, 0 0.15

Rotor Freq. (hz) 300 BpA3 (m) -0.21, 0.00, 0.05 MpB (m) 0, 0, 0 0.05
Pixel Noise (pix) 1 BpA4

(m) 0.00, -0.21, 0.05 ct (N s2/rad2) 9.9865e-06 5.0e-6
Rotor White Noise (rad/s) 0.043 λ1,λ2,λ3,λ4 1, -1, 1, -1 cm (N s2/rad2) 1.455784e-7 1.0e-6

Gyro. White Noise 1.6968e-4 Accel. Rand. Walk 3.0000e-2 M j 0.01, 0.01, 0.02 0.005
Accel. White Noise 2.0000e-2 Gyro. Rand. Walk 1.9393e-4 Mass (kg) 1 0.15

The pose model thus will be used in our later experiments.
Remarks: Based on the above discussions, we conclude

that the force and moment noise parameters are crucial for
the compensation of potential MAV dynamic inaccuracies
when modeling the forces and moments. Proper noise pa-
rameter tuning is necessary for a consistent estimator but
limits the application of the proposed system. To address
this issue, we propose the ensuing SKF estimator design.

V. SKF-BASED PARAMETER IDENTIFICATION

As evident from the previous section, tightly-coupled
EKF-based estimation strongly assumes accurate dynamic
and measurement models. However, the commonly-used
MAV dynamic model inherently possesses inaccuracy in
practice, which, if not properly addressed, can be detrimental
to parameter identification and state estimation. Therefore,
inspired by [38], we propose to leverage the Schmidt-Kalman
filter (SKF) formulation, which relaxes the requirements for
noise parameter tuning and protects the visual-inertial state
estimation performance, making the estimator suitable for
practical applications.

Specifically, we partition the state vector into the active
state xA and parameter state xθ during the MAV measure-
ment update process [see Eq. (16)]. The state estimate x̂k+1

and the corresponding covariance Pk+1 at timestep k+1 are
represented as:

x̂k+1 =

[
xAk+1

xθk+1

]
, Pk+1 =

[
PAA PAθ

P⊤
Aθ Pθθ

]
(37)

By setting the Kalman gain related to the active state to zero
KA = 0 from Eq. (36) , the Schmidt update equations are:

x̂⊕
k+1 = x̂k+1 ⊞

[
0
Kθ

]
rM,k+1 (38)

P⊕
k+1 = Pk+1 −

[
0 ∆PAθ

∆P⊤
Aθ ∆Pθθ

]
(39)

∆PAθ = KAHx

[
P⊤

Aθ P⊤
θθ

]⊤
, ∆Pθθ = KθSK

⊤
θ (40)

It is clear that the active state and its covariance do not
change during the update, preventing the corruption of VIO
if the MAV dynamic-induced measurements are inconsistent.
However, the system parameters xθ will still be updated and
SKF still tracks correlations in the covariance properly.

Remarks: We stress that the MAV dynamic-induced mea-
surements are processed with the SKF update which will only
correct xθ and their correlations. The visual measurements
are processed with standard EKF update (see Sec. III-D)

allowing state corrections to update xA and indirectly refine
xθ through the tracked correlations.

Alternatively, we can simply employ a decoupled Schmidt-
Kalman filter (DSKF) update, which has the same mean
update as SKF [see Eq. (38)] but different covariance update
[see Eq. (39)] with:

∆PAθ = 0 , ∆Pθθ = KθSK
⊤
θ (41)

This updated DSKF covariance drops all the correlations
between xA and xθ to prevent indirect updates.

VI. MONTE-CARLO SIMULATIONS

The RotorS [35] MAV simulator was used to generate a
realistic and feasible fully excited motion trajectory for a
commonly-used quadrotor model (see left of Fig. 2). We
leverage the OpenVINS [28] simulation framework, which
fits a B-spline to the trajectory to allow for the calculation
of groundtruth accelerations and velocities. From these,
noisy IMU readings and corresponding biases, visual feature
bearing measurements, and rotor speed measurements are
generated. The key configurations and parameters are listed
in Table II.

A. Rotor Speed Generation

With the B-spline formulation of the simulated trajectory,
we can generate IMU angular velocity Iω, angular acceler-
ation Iα, and linear acceleration GaI at any desired time.
The MAV motion states are computed with the rigid body
constraints accordingly:

Mω = M
I RIω (42)

GaM = GaI +
I
GR

⊤ (
⌊Iω⌋⌊Iω⌋+ ⌊Iα⌋

)
IpM (43)

The total force and moment at a specific time are:[
MF
MM

]
=

[
m · MG R

(
GaM + Gg

)
MJMαM + ⌊MωM⌋MJMωM

]
(44)

Then, with Eq. (6) and (7), we formulate the following linear
system to solve for the rotor speeds:[

B1 B2 B3 B4

]
· r =

[
MF
MM

]
(45)

where r = [r21 · · · r24]
⊤ and Bi is defined as:

Bi =

[
ct

M
Ai
Rez

cmλi
M
Ai
Rez + ct⌊MpAiez⌋

]
(46)

Finally, white Gaussian noise nr,i is added to ri for realistic
simulation of rotor encoder measurement rm,i (e.g., rm,i =
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ri + nr,i). We note that rotor speeds generated from our
simulator are similar to the one from RotorS [see [26]].

Fig. 3: Parameter estimation errors (solid) and 3σ bounds
(dotted) for five runs (colors) with different realizations of
the noise and initial perturbations.

Fig. 4: Estimation errors (solid) and 3σ bounds (dotted) for
m and M j over 5 runs (colors) with different initial guesses.
Note that m and M j are calibrated separately.

B. Online Parameter Identification

We first investigate the MAV system parameter identi-
fication performance of the proposed system. In order to
show the robustness, the proposed SKF-based estimator is
run on the simulation trajectory five times, with the MAV
pose model and the system noise σ = 0.20. For each run,

we perturb the MAV system parameters using a Gaussian
distribution with standard deviation shown in Table II.

As demonstrated by [18], [21], [22], [26], MAV parame-
ters have the following observability proprieties:

• The z component of BpM is unobservable
• ct, cm, m and M j are jointly unobservable

We consequently perform three sets of simulations to verify
the capability of the proposed estimator: (i) estimate ct,
cm, xMI and the xy-components of MpB , (ii) the mass
m, and (iii) moment of inertia M j. The first sets of results
are illustrated in Fig. 3 and show that parameters converge
quickly to the ground truth even with significant and different
initial perturbations. The m and moment of inertia M j
estimation results are presented in Fig. 4. We note that both
the z-components of MAV-IMU orientation I

MR and moment
of inertia M j converge much slower than other parameters,
which reconfirms the results from [21], [22]. We hypothesize
this is due to the small (or constant) yaw change during the
MAV integration interval, which induces the z-component of
I
MR and M j to be less observable.

We further evaluate the parameter identification accuracy
of the SKF-based estimator over different noise σs for
rotor force and moment. As shown in Table III, it is as
expected that the inaccurate modeling (i.e., σ = 0.05) of the
MAV dynamics will cause the standard EKF based system
to become inconsistent, which additionally degrades the
identification accuracy. In contrast, the SKF and DSKF-based
estimators still offer robust visual-inertial pose estimation
since there is no erroneous information from incorrect MAV
measurements corrupting xA. The SKF-based estimators also
robustly achieve the accurate estimation performances for xθ

even with different sigmas. Hence, the parameter tuning of σ
can be greatly relaxed for the SKF based estimators, making
the proposed system more robust for different applications.

Comparing the SKF and DSKF, the DSKF drops corre-
lations between xA and xθ, which theoretically is a loss of
information. Interestingly, this has little impact on the con-
verged parameter accuracy from our simulation results. Our
conjecture is that this might be due to the inaccurate prior
and/or small correlations, which will be further investigated.

VII. REAL-WORLD EXPERIMENTS

Blackbird UAV dataset [23] provides real-world inertial
readings, rotor encoder measurements, and ground truth
poses for a MAV with photo-realistic images rendered in
a series of different environments and is suitable for the
proposed estimator evaluation which fuses visual-inertial
and MAV dynamic information. As general 3D motion is
more appropriate for parameter identification, we picked the
Ampersand sequence (shown in Fig. 5) in the large apart-
ment environment with fixed yaw and different linear veloci-
ties to evaluate the proposed estimator. In the experiment, we
utilize the pose model with hand-tuned sigmas nf and nm of
1.0 and 0.15 as they produce reasonable results for the EKF.
OpenVINS [28] and VINS-Mono [13] were also evaluated
as state-of-the-art visual-inertial baselines. We were unable
to get VIMO [11] to run with sufficient accuracy with the
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TABLE III: Average RMSE and NEES for IMU pose and MAV parameters (mean error ± standard deviation) over 50
Monte-Carlo runs using pose update. Mass and moment of inertia were not calibrated as they are jointly unobservable.

σ RMSE (deg / m) NEES (ori / pos) c̃t (N s2/rad2) c̃m (N s2/rad2) M p̃B (m) I
M δθ (deg) I p̃M (m)

0.05
EKF 2.196 / 307.436 1560.65 / 935.05 3.991e-08 ± 6.713e-08 1.319e-08 ± 1.561e-09 3.226e-05 ± 3.838e-05 0.1182 ± 0.0962 1.339e-03 ± 1.111e-04

DSKF 0.749 / 0.184 2.209 / 2.690 2.544e-08 ± 5.888e-09 1.270e-08 ± 1.474e-09 3.168e-05 ± 3.431e-05 0.0996 ± 0.0270 1.373e-03 ± 8.718e-05
SKF 0.749 / 0.184 2.209 / 2.690 2.337e-08 ± 6.121e-09 1.278e-08 ± 1.483e-09 3.176e-05 ± 3.604e-05 0.0996 ± 0.0324 1.402e-03 ± 8.643e-05

0.50
EKF 0.852 / 0.187 3.081 / 2.624 2.738e-08 ± 2.824e-09 7.938e-08 ± 6.740e-08 5.163e-05 ± 5.984e-05 0.4426 ± 0.3153 1.306e-03 ± 9.793e-05

DSKF 0.749 / 0.184 2.209 / 2.690 2.659e-08 ± 6.251e-09 7.941e-08 ± 6.741e-08 5.226e-05 ± 5.760e-05 0.4428 ± 0.3179 1.322e-03 ± 1.009e-04
SKF 0.749 / 0.184 2.209 / 2.690 2.752e-08 ± 2.781e-09 7.939e-08 ± 6.744e-08 5.152e-05 ± 5.987e-05 0.4428 ± 0.3156 1.309e-03 ± 9.810e-05

1.00
EKF 0.742 / 0.184 2.817 / 2.285 3.189e-08 ± 5.236e-09 2.446e-07 ± 2.126e-07 1.553e-04 ± 1.317e-04 0.9481 ± 0.7116 1.340e-03 ± 1.948e-04

DSKF 0.749 / 0.184 2.209 / 2.690 3.112e-08 ± 7.903e-09 2.446e-07 ± 2.126e-07 1.557e-04 ± 1.300e-04 0.9482 ± 0.7129 1.355e-03 ± 1.916e-04
SKF 0.749 / 0.184 2.209 / 2.690 3.198e-08 ± 5.266e-09 2.446e-07 ± 2.126e-07 1.552e-04 ± 1.315e-04 0.9482 ± 0.7117 1.342e-03 ± 1.952e-04

1.50
EKF 0.733 / 0.183 2.756 / 2.236 3.718e-08 ± 8.938e-09 4.019e-07 ± 3.498e-07 3.192e-04 ± 2.612e-04 1.3133 ± 1.0025 1.395e-03 ± 3.709e-04

DSKF 0.749 / 0.184 2.209 / 2.690 3.642e-08 ± 1.082e-08 4.019e-07 ± 3.498e-07 3.191e-04 ± 2.592e-04 1.3133 ± 1.0026 1.409e-03 ± 3.672e-04
SKF 0.749 / 0.184 2.209 / 2.690 3.724e-08 ± 8.961e-09 4.019e-07 ± 3.498e-07 3.190e-04 ± 2.610e-04 1.3133 ± 1.0038 1.396e-03 ± 3.713e-04

Fig. 5: Five runs of the proposed SKF estimator with pose update on the 286m Blackbird 3m/s yaw constant Ampersand
trajectory with different initial perturbations to the MAV parameters (left). The groundtruth trajectory (top right) and estimated
trajectory of VINS-Mono and OpenVINS are shown (bottom right).

TABLE IV: RMSE values for each estimator in units of
degree/meters on the Blackbird Ampersand sequence.

Algorithm RMSE (1 m/s) RMSE (2 m/s) RMSE (3 m/s)

Proposed EKF 1.463 / 0.067 1.696 / 0.119 4.195 / 0.703
Proposed SKF 1.571 / 0.069 1.703 / 0.120 3.881 / 0.720

Proposed DSKF 1.571 / 0.069 1.703 / 0.120 3.881 / 0.720
OpenVINS [28] 1.571 / 0.069 1.703 / 0.120 3.881 / 0.720

VINS-Mono [13] 1.281 / 0.075 2.851 / 0.515 4.598 / 0.965

authors’ configuration file. The trajectory accuracy for all
methods are reported in Table IV. The proposed system with
SKF and OpenVINS have the exact same performance (as
expected) and outperform VINS-Mono.

We conjecture that the EKF-based method slightly im-
proves in accuracy for the lower velocity trajectories due to
the smaller force along the local x and y directions. However,
at higher speeds (3m/s), it hurts orientation accuracy. This
supports our motivation to design a SKF-based estimator to
protect VIO performance as the EKF-based method relies
on parameter tuning of the MAV noise model. The proposed
SKF-based system generates identical trajectory accuracy to
the OpenVINS and demonstrates its robustness and accuracy
to different motion profiles.

We next evaluate parameter identification capability by
running the estimator on the same trajectory multiple times
with different initial values. As shown in Fig. 5, ct, cm, xy-
components of MpB , and xMI converge to the same values

at the end. In lieu of groundtruth parameters, this shows
both the robustness and repeatably of the proposed method.
Similar to the simulation (see Fig. 3), the z-component of
the MAV-IMU orientation either does not show the trend of
convergence or converges slower than other parameters. This
is still likely due to the small yaw change during the MAV
integration interval. Moreover, the Ampersand trajectory
is designed to be yaw constant, which could make the z
direction of MAV-IMU orientation even vulnerable.

VIII. CONCLUSION AND FUTURE WORK

Accurate system modeling and parameter identification are
essential for MAV navigation and control. In this paper, we
have developed a tightly-coupled real-time SKF estimator
for MAV system parameter identification which avoids the
requirements of an additional sensor, the synchronization
and joint propagation of rotor speeds with the IMU, or the
estimation of an assumed external force. Special attention
was paid to the inaccuracies of the MAV dynamic model.
Through numerical studies, we have shown that the naive fu-
sion of MAV dynamics in an EKF can degrade performance
due to overconfident noise parameters. The SKF-based es-
timator was leveraged to relax extensive parameter tuning
procedures, prevent VIO performance degradation, and en-
sure accurate and robust parameter identification. Extensive
Monte-Carlo simulations and real-world evaluations were
performed to demonstrate that the proposed system achieves
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accurate and robust online MAV parameter identification. In
the future, we plan to extend the work with an degenerate
motion analysis for system parameters along with calibration
parameters (e.g., see [39]), and develop observability-aware
motion planning for autonomous navigation.
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