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Abstract— In this paper, we propose a novel consistent state
estimator design for visual-inertial systems. Motivated by first-
estimates Jacobian (FEJ) based estimators – which uses the
first-ever estimates as linearization points to preserve proper
observability properties of the linearized estimator thereby
improving the consistency – we carefully model measurement
linearization errors due to its Jacobian evaluation and propose a
methodology which still leverages FEJ to ensure the estimator’s
observability properties, but additionally explicitly compensate
for linearization errors caused by poor first estimates. We term
this estimator FEJ2, which directly addresses the discrepancy
between the best Jacobian evaluated at the latest state estimate
and the first-estimates Jacobian evaluated at the first-time-ever
state estimate. We show that this process explicitly models
that the FEJ used is imperfect and thus contributes additional
error which, as in FEJ2, should be modeled and consistently
increase the state covariance during update. The proposed FEJ2
is evaluated against state-of-the-art visual-inertial estimators
in both Monte-Carlo simulations and real-world experiments,
which has been shown to outperform existing methods and
to robustly handle poor first estimates and high measurement
noises.

I. INTRODUCTION

In the past decades, visual-inertial navigation systems
(VINS) have become eminent in robotics, AR/VR, and
autonomous applications due to its low-cost, small form,
and complementary nature [1]. VINS looks to fuse plat-
form dynamic information from an inertial measurement
unit (IMU) and aiding camera sensor(s) to produce an
accurate and robust 6 degrees-of-freedom (d.o.f) pose and its
corresponding uncertainty. Two classes of estimator designs
typically used are nonlinear optimization-based approaches
[2]–[5] and light-weight filter-based ones (e.g., an extended
Kalman filter (EKF)) [6]–[10]. The latter remains popular
due to its efficiency, simplicity, and accuracy.

The observability and consistency of such estimators have
attracted significant research efforts due to its ability to
provide: (i) the minimal conditions for initialization, (ii) in-
sights into what states are unrecoverable, and (iii) degenerate
motions which can hurt the performance of the system [11]–
[14]. An estimator is consistent when its errors are zero-mean
(unbiased) and the covariance matrix is equal to that reported
by the estimator [15, Section 5.4]. Consistent estimators
are of particular interest for real-world applications as the
uncertainty of the pose is crucial for safe navigation through
unknown environments. EKF-based VINS estimators have
been shown to be inconsistent due to spurious information
gain along unobservable directions and have required the
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creation of “observability aware” filters which explicitly
correct for these inaccurate information gains causing filter
over-confidence [7], [8], [16].

From the system observability perspective, the standard
EKF VINS should not gain information in the unobservable
subspace which has been analytically shown to correspond
to the 4 d.o.f global yaw and position of the platform [13].
However, linearization discrepancies of the nonlinear system
models cause systems to mistakenly gain information along
unobservable directions. For example, when Jacobians are
evaluated at the current state estimates, the linearized error-
state system has one less unobservable direction than the
underlying nonlinear system, causing information gain along
the global yaw of the platform and reporting an over-
confident system covariance [7].

To solve this issue, estimators such as robocentric VINS
[9], [17], invariant filters [18]–[21], observability-constrained
[8], and first-estimates Jacobian [7], [16], [22] method-
ologies have been proposed. The robocenteric VINS [9],
[17] reformulates their estimation problem with respect to
a moving local frame, rather than the fixed global frame
which alleviates inconsistency issues, but requires extra states
to be estimated and causes more unobservable directions.
Invariant VINS [18]–[20], [23] associates filter uncertainty
to an invariant error state on the manifold, which does not
change under any stochastic observable transformation, thus
maintaining consistency. However, if features are maintained
in the state vector, the propagation of it will become com-
putationally expensive because these features are involved
in the covariance propagation [21]. Observability-constrained
(OC) estimators [8] guarantee the observability properties by
directly enforcing and maintaining the system unobservable
subspace (e.g., the observability matrix’s nullspace). The
direct modifications of their state transition and Jacobian
matrices ensure no gain of spurious information while also
allowing for the best estimate to be used during linearization.
Nonetheless, the Jacobians used do not strictly follow the
first-order Taylor series expansion and thus are not theoreti-
cally the optimal.

First-estimates Jacobian (FEJ) [7], [16], [22] methodolo-
gies guarantee the observability properties by observing that
if the linearized system state transition matrix and Jacobians
are evaluated at the same estimate over all time periods, the
system maintains its observability properties. In practice, a
natural choice of linearization point is to use the first state
estimate for all future timesteps, thus ensuring that the 4
d.o.f unobservable VINS subspace does not gain spurious
information. One crucial downside of FEJ, which is dis-
cussed in detail in the following sections, is that the Jacobian
can be erroneous due to the poor first state estimates. This
can cause non-negligible linearization errors, as compared
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to using the best estimate, and hurt estimator accuracy and
consistency since an unmodeled source of error is being
introduced [24]. Ideally, we would want to be able to use
the best estimate during linearization or take into account this
additional source of error while also ensuring observability
properties. The proposed FEJ2 methodology looks to directly
address this weakness. The main contributions of this work
include:
• We propose a novel visual-inertial state estimator de-

sign, named FEJ2, which addresses the sensitivities
of FEJ to poor initial estimates. The proposed FEJ2
ensures both accurate and consistent estimation while
being robust to large initialization errors.

• We explicitly model the linearization errors that FEJ
neglects, due to using the first estimate, to ensure the
estimator models all sources of error. The proposed
FEJ2 is theoretically proven to consistently estimate the
state covariance during update.

• A visual-inertial estimator which leverages FEJ2 is
presented and verified in both Monte-Carlo simulations
and real-world experiments against existing state-of-the-
art consistent VINS estimators. FEJ2 is shown to out-
perform existing methods and is able to robustly handle
poor first estimates and high measurement noises.

II. VISUAL-INERTIAL SYSTEMS

In this section, we briefly overview the EKF-based visual-
inertial system which fuses IMU readings and environmental
feature measurements.

A. Propagation
The state vector x consists of the IMU state xI and the

feature state xf .

x =
[
x>I x>f

]>
(1)

=
[
I
Gq̄
> Gp>I

Gv>I b>g b>a | Gp>f1 · · ·
Gp>fM

]>
where I

Gq̄ is the unit quaternion1 that represents the rotation
I
GR from global frame {G} to the IMU frame {I}; GpI and
GvI are the IMU position and velocity in {G}, respectively;
bg and ba are the gyroscope and accelerometer biases; and
the feature state xf comprises the global position of M
landmarks. We use xk to represent the state at timestep tk.
The IMU kinematics are used to evolve the state from time
tk to tk+1 [25]:

xIk+1
= f(xIk ,amk

,ωmk
) (2)

where the linear acceleration amk
and angular velocity ωmk

measurements are contaminated by zero-mean white Gaus-
sian noises. Features remain static, and have zero dynamics
Gṗfi = 0. With the linearized state transition matrix Φ̂(k+
1, k) from time tk to tk+1 computed using current state
estimates, the IMU noise covariance Qk and state covariance
propagation can be written as:

Pk+1|k = Φ̂(k + 1, k)Pk|kΦ̂
>(k + 1, k) + Qk (3)

1Throughout the paper x̂ is used to denote the current best estimate of
a random variable x with x̃ = x � x̂ denotes the error state. For the
quaternion error state, we employ JPL multiplicative error [25] and use
δθ ∈ R3 defined by the error quaternion i.e., δq̄ = q̄⊗ ˆ̄q−1 ' [ 1

2
δθ> 1]>.

The “�” and “�” operations map elements to and from a given manifold
and equate to simple “+” and “-” for vector variables [26].

Qk =

∫ tk+1

tk

Φ̂(k + 1, τ)G(τ)QG>(τ)Φ̂>(k + 1, τ)dτ

where G is the Jacobian matrix with respect to noise and
Pk+1|k represents the covariance at timestep tk+1 computed
using measurements up to timestep tk. Full details can be
found in the companion technical report [27].

B. Measurement Update
Assuming a calibrated perspective camera, the bearing

measurement of the ith feature at timestep tk+1 can be
related to the state by the following:

zk+1 = h(xk+1) + nk+1 =: Λ(Ck+1pfi) + nk+1 (4)

Λ([x y z]>) = [x/z y/z]>, Ck+1pfi =
[
x y z

]>
(5)

Ck+1pfi = C
I R

Ik+1

G R
(
Gpfi − GpIk+1

)
+ CpI (6)

where Λ(·) is the camera perspective projection model;
nk+1 ∼ N (0,Rk+1) is the white Gaussian noise;
{CI R,CpI} are the camera-IMU transformation. Linearizing
Eq. (4) with respect to the current state estimate x̂k+1 we
get:

zk+1 ' h(x̂k+1) + Ĥk+1(xk+1 � x̂k+1) + nk+1 (7)

⇒ rk+1 , zk+1 − h(x̂k+1) ' Ĥk+1x̃k+1 + nk+1 (8)

where Ĥk+1 denotes the Jacobian evaluated at x̂k+1. Ĥk+1

only contains non-zero blocks for the pose and the ith feature
and, thus is computed as (k + 1 subscripts are dropped for
brevity):

Ĥ = ∇ĥi
[
Ĥθ Ĥp 03×9 | · · · Ĥfi · · ·

]
(9)

Ĥθ = bIGR̂
(
Gp̂fi − Gp̂I

)
c, Ĥp = −Ĥf = −IGR̂ (10)

∇ĥi =
1

ẑi
2

[
ẑi 0 −x̂i
0 ẑi −ŷi

]
C
I R (11)

This residual can then directly update the state [28].

C. Observability Analysis
System observability plays a crucial role in state estima-

tion [11], [29]. Understanding system observability provides
a deep insight about the system’s geometrical properties
and determines the minimal measurement modalities needed.
With the state transition matrix, Eq. (3), and measurement
Jacobian, Eq. (8), we construct the observability matrix [13]:

O ,


H0Φ(0, 0)
H1Φ(1, 0)

...
Hk+1Φ(k + 1, 0)

 (12)

If O is of full column rank, the system is fully observable.
However, VINS is partial observable with a nullspace N sat-
isfying ON = 0 (see [13], [16]). The nullspace N describes
the state unobservable subspace can not be recovered with
measurements.

The nullspace N for VINS should be of 4 d.o.f and
relates to the global yaw and translation [13]. The standard
EKF, which always computes the state transition Φ̂(k, 0) and
measurement Jacobian Ĥk using the current state estimates,
makes the global orientation appear to be observable and
thus reduces the nullspace to only 3 d.o.f dimension [7].
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This causes the filter gain extra information and become
overconfident with estimation results. Moreover, a valid state
transition matrix should have the semi-group property [30]:

Φ(k + 1, k − 1) = Φ(k + 1, k)Φ(k, k − 1) (13)

Φ̂ [see Eq. (3)] evaluated at current state estimate violates
this property (see [7], [30, Lemma 4.1]). The above issues
cause inconsistency and inaccuracy.

III. CONSISTENT VISUAL-INERTIAL
ESTIMATOR DESIGN

Leveraging the observability-based consistent estimator
designs [16] and motivated by the great success of such
estimators in visual-inertial systems [7], [8], we aim to
improve this observability-based design by addressing its sig-
nificant caveat of (potentially) large linearization errors. To
this end, in what follows, after reviewing the observability-
based methodology, we present in detail the proposed FEJ2
consistent estimator design methodology.

A. Observability-based Methodology
1) OC-VINS: OC [8], [13] maintains the proper system

observability properties by enforcing the initial (and thus
the current) unobservable nullspace N0 which spans correct
system unobservable directions:

HkΦ(k, 0)N0 = 0, ∀k ≥ 0 (14)

This property is maintained through finding the best Φ′(k+
1, k) and H

′

k such that:

Nk+1 = Φ
′
(k + 1, k)Nk , H

′

kNk = 0, ∀k ≥ 0 (15)

where Nk denotes the system unobservable subspace at
timestep k propagated from the initial chosen N0. Hence,
the system maintains correct unobservable directions with
Φ′(k + 1, k) and H

′

k. The modified Φ′(k + 1, k) becomes
a valid state translation matrix with the semi-group property
(e.g., it satisfies Eq. (13)). It is important to note that OC
heavily relies on N0 and poor initial estimates in N0 will
hurt the system performance.

2) FEJ-VINS: FEJ-based VINS [7], [22] directly select
the first ever available estimate, denoted by x̄, for each state
variable as linearization points at all future timesteps. During
propagation, FEJ evaluates the state translation matrix Φ̄(k+
1, k) with propagated state estimates instead of the updated
ones to ensure Φ̄(k + 1, k) has a valid semi-group property
(e.g., satisfies Eq. (13) [30, Lemma 4.2]). FEJ also selects
the first state estimates x̄ to construct measurement Jacobian
H̄k+1 and its linearized residual as:

r̄k+1 ' zk+1 − h(x̂k+1) ' H̄k+1x̃k+1 + nk+1 (16)

Since there are no linearization point changes, the unobserv-
able subspace dimensions are automatically preserved, which
can be verified as follows:

H̄k+1Φ̄(k + 1, 0)N0 = 0, ∀k ≥ 0 (17)
We now show that the underlying FEJ assumption can

possibly incur large linearization errors by re-deriving the
linearized measurement with a first order Taylor series ex-
pansion at x̄ (subscript k + 1 dropped for clarity):

z ' h(x̄) + H̄(x� x̄) + n (18)

= h(x̄) + H̄(x̂� x̄) + H̄(x� x̂) + n (19)
' h(x̂) + H̄x̃ + n (20)

FEJ estimator uses Eq. (20) during update (both residual and
error state are at the current estimates). Although H̄ ensures
the system unobservable subspace, it might lead the system
to suffer from un-optimal updates due to poor x̄. Specifically,
FEJ assumes the following:

h(x̂) ' h(x̄) + H̄(x̂� x̄) (21)

This approximation can introduce extra linearization errors
caused by the estimate change x̂� x̄, especially when poor
initial estimates x̄ are used. This motivates the proposed
FEJ2 which looks to directly take into account this additional
linearization error.

B. FEJ2 Methodology
The above estimator designs from observability perspec-

tive avoid spurious information erroneously flooding into the
unobservable directions of the state space, thus improving
consistency. As they rely on initial estimates to construct
Jacobians, the estimator may suffer from the poor state
initialization. To address this issue, we seek to linearize
the system at the current state estimates x̂ for the smallest
linarization errors and use the first-estimates Jacobian H̄ to
avoid extra information gain along unobservable directions.

To achieve this, FEJ2 derives a more accurate linear model
to approximate the nonlinear system as:

zk+1 ' h(x̂k+1) + Ĥk+1x̃k+1 + nk+1 (22)

= h(x̂k+1) + (H̄k+1 + Ĥk+1 − H̄k+1)x̃k+1 + nk+1

r̂k+1 = zk+1 − h(x̂k+1) (23)
' H̄k+1x̃k+1 + ∆Hk+1x̃k+1 + nk+1 (24)

where ∆Hk+1 = Ĥk+1−H̄k+1 indirectly captures lineariza-
tion points change between the first and current state esti-
mates. Therefore, we project Eq. (24) onto the left nullspace
of ∆H using the QR decomposition, i.e., ∆U>k+1∆Hk+1 =
0.

∆Hk+1 =
[
∆Qk+1 ∆Uk+1

] [∆Tk+1

0

]
(25)

where
[
∆Qk+1 ∆Uk+1

]
is a unitary matrix, columns of

∆Qk+1 and ∆Uk+1 form basis for the range and nullspace
of ∆Hk+1, respectively. ∆Tk+1 is an upper triangular ma-
trix. Multiplying ∆Uk+1 to Eq. (24) results in the following
the measurement residual r∗k+1 and Jacobian H∗k+1:

∆U>k+1r̂k+1 = ∆U>k+1H̄k+1x̃k+1 + ∆U>k+1nk+1

⇒ r∗k+1 = H∗k+1x̃k+1 + n∗k+1 (26)

where nk+1 is zero mean Gaussian noise with covariance
Rk+1 [31] and n∗ ∼ N (0,∆U>k+1Rk+1∆Uk+1). We then
update the filter with the modified r∗k+1 and H∗k+1.

As evident from the above, the QR factorization is lever-
aged to find the left nullspace ∆U and marginalize ∆H
via ∆U>∆H = 0 (subscript k + 1 dropped for clarity). In
order to find such nullspace, ∆Hm×n is required to be full
column rank, where m and n are the size of measurements
and states, respectively. Assuming rank(∆H) = n, by the
rank-nullity theorem, we find nullity(∆U) = m − n,
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that is, the dimension of the left nullspace dim(∆U) and
also the remaining measurement residual size [r∗ in Eq.
(24)] after the nullspace operation. While this is the case
for many multi-view scenarios, some systems may have less
visual observations than the dimensions of the state (i.e.,
m ≯ n). For example, assuming M environmental features
are observed by monocular camera [see Eq. (4)], we can
find the size of measurements m = 2M , while the state
consists the 6 d.o.f IMU pose and the 3D feature positions,
thus n = 6 + 3M . We notice that 2M ≯ 6 + 3M,∀M ≥ 0.
If this occurs, it is not difficult to address in an engineering
sound way as discussed in Section III-D.2.

C. FEJ2 Properties
We now show that FEJ2 not only preserves the proper ob-

servability properties but compensates for large linearization
errors as in FEJ-based estimators. Note that, in what follows,
we drop the subscripts for clarity.

Lemma 3.1: FEJ2 employs a linearized system model that
has an unobservable subspace of correct dimensions and
structure, and shares the same (initial) nullspace of the
observability matrix as the FEJ and OC.

Proof: The observability matrix of the FEJ (Ō) and OC
(O′) assume the following conditions:

OC: O′N0 = 0 FEJ: ŌN0 = H̄Φ̄N0 = 0 (27)

where N0 is the selected initial system unobservable sub-
space introduced in Section III-A.1. It is not difficult to show
that FEJ2 shares the same structure of observability matrix
with FEJ and OC:

O∗N0 = H∗Φ̄N0 = ∆U>H̄Φ̄N0 = ∆U>ŌN0 = 0

This proves that FEJ2 keeps the correct unobservable sub-
space.

Lemma 3.2: FEJ2 has larger covariance estimates than
FEJ.

Proof: Without losing generality, we assume the noise
covariance is isotropic and identical (i.e., R = I), which
however can be easily extended to general cases by noise
whitening. After QR factorization for ∆H as in Eq. (25), due
to the unitary property we have ∆Q∆Q> + ∆U∆U> = I.
The information matrix of FEJ2 can then be derived as:

Σ∗ = H∗>H∗ = (∆U>H̄)>(∆U>H̄) (28)

= H̄>H̄− H̄>∆Q∆Q>H̄ (29)

, Σ̄−∆Σ (30)

Notice that Σ̄ = H̄>H̄ is the FEJ information matrix, ∆Σ is
a positive semidefinite matrix. Eq. (30) shows FEJ2 deflates
the information matrix of FEJ, which, in turn, inflates the
covariance matrix P of system since P = Σ−1.

Basically, FEJ2 projects the measurement residual function
onto the left nullspace of ∆H. As ∆H is the difference
between Jacobians evaluate with x̄ and x̂, a general consider-
ation is it represents the linearization errors. In addition, since
Ĥ = H̄ + ∆H, where H̄ ensures that the linearized system
keeps the same observability property as the underlying
nonlinear system, ∆H causes extra information gain along
unobservable directions. At this point, we see that FEJ2 is
a more consistent and accurate estimator which guards the

system observability properties and better models the system
uncertainty compared to FEJ.

D. FEJ2 Applications
FEJ2 can be implemented to different VINS frameworks

as a base estimator design. In this section we continue to
address the FEJ2 nullpace projection operation and explain
how to utilize FEJ2 idea into SLAM and multi-state con-
straint Kalman filter (MSCKF) based visual-inertial odome-
try (VIO).

1) FEJ2-EKF SLAM: In the SLAM system, the state
vector includes the current IMU state and the features Eq. (1).
The standard measurement Jacobians are showed in Eq. (10).
To simplify the discussion we assume the robot directly
receives relative position measurements of features, thus
∇h = I. In the evaluation of the first-estimates Jacobian
H̄k+1, we always utilize the feature estimates from the first
time they were observed and initialized, if the first estimate
value of the ith feature is p̄fi , we have:

H̄θi = bIGR̄(Gp̄fi − Gp̄I)c H̄pi = −H̄fi = −IGR̄ (31)

Note that in EKF-SLAM, the IMU pose estimates {IGR̂,
Gp̂I} are only used one-time for system linearization and
evolve to the next timetep immediately, hence I

GR̄ = I
GR̂

and Gp̄I = Gp̂I . Since only the IMU state evolves in H̄pi

and H̄fi , ∆Hfi = ∆Hpi = 0. Stacking measurements of all
detected features at timestep tk+1, the structure of ∆H [27]
is:

∆H =
[
∆Hθm×3

· · · 0 · · ·
]
m×n (32)

As ∆Hθ is the only non-zero matrix block, we apply the
FEJ2 nullspace operation [see Eq. (26)] to ∆Hθ instead of
the full state. It relaxes the matrix rank requirement and only
needs m > 3, which is common in practice.

2) FEJ2-MSCKF VIO: Within a MSCKF VIO frame-
work, the state vector includes the latest IMU state xI
a sliding window of cloned poses and features [6]. Since
these MSCKF features are marginalized instantly without
relinearization in the future, FEJ, FEJ2 or standard EKF
updates for them are identical.

More attention is paid to the SLAM features which can
be reliably tracked longer than the current sliding window.
Those features are initialized into the active state vector
and used for update until lost tracking. The state vector at
timestep tk+1 thus include:

xk+1 =
[
x>Ik+1

x>clone | · · · Gp>fi · · ·
]

(33)

where xclone refers to all the active cloned poses. As nor-
mally the measurements from latest image just contain the
Jacobians for the current IMU pose and the feature states, the
structure of ∆H with respect to xIk+1

and SLAM features
xf can be simplified as:

∆H =
[
∆HI ∆Hf

]
=
[
∆Hθ ∆Hp ∆Hf

]
m×n

However, as mentioned before, ∆H will not be a full
column rank matrix if the sensor platform only receives
monocular measurements for state update. Even though the
left nullspace for ∆H exists with stereo measurements, the
numerical issue occasionally happen from our experiences.
We highlight that ∆Hf is a small and sparse matrix [see
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Fig. 1: A typical run for proposed estimators on udel gore dataset.

TABLE I: The average RMSE and NEES over 50 Monte-Carlo simulations
for the relative position measurement model with different estimators.

Estimator RMSE
Ori. (deg)

RMSE
Pos. (m)

NEES
Ori.

NEES
Pos.

STD 1.458 0.376 4.086 4.896
OC 0.472 0.323 2.397 4.119
FEJ 0.491 0.311 2.493 3.887

FEJ2 0.446 0.305 2.287 3.692

Eq. (10)], each block row of ∆Hf only contains one non-
zero block to the ith feature, it could lead to numeral insta-
bility when employing QR factorization. Another potential
challenge of applying FEJ2 is that, the size of measurements
reduces from m to m − n after the nullspace operation,
Eq. (26), which causes some geometrical information loss.

To this end, we advocate for the FEJ2 design which
only project the left nullspace of ∆HI instead of the full
∆H, where ∆HI is a tall matrix and typically full column
rank since multiple features are continuously tracked. As
investigated below, applying FEJ2 to only this sub-Jacobian
has significant performance gains.

IV. MONTE-CARLO SIMULATIONS

A series of Monte-Carlo simulations for both SLAM and
MSCKF-VIO were conducted under various conditions to
validate the preceding theoretical analyses and demonstrate
the capability of FEJ2. Due to space limitation, we refer
our technical report [27] for more results. In the following
sections, we use STD to represent standard estimator in the
tables and figures.

A. SLAM Simulation
We first ran a SLAM simulation (as introduced in Section

III-D.1) where a robot following the 3D trajectory shown
in Fig. 1 continuously observes fixed number of landmarks
at every timestep. Accordingly, landmarks will be initialized
into state vector at the first time. The OpenVINS simulator
[10] is leveraged to simulate IMU readings and 20 environ-
mental features. In this simulation, the robot continuously
receives two feature position measurements of each landmark
corrupted by perturbations of 18% of the max sensing range.
We report the averaged Root Mean Square Error (RMSE)
[32] and Normalized Estimation Error Squared (NEES) [15]
over 50 Monte-Carlo runs in Table I.

It is clear that FEJ2 achieves the smallest RMSE compared
to the other estimators, thus is the most accurate. Ideally,
a consistent estimator should have position and orienta-
tion NEES values smaller or close to 3. The position and
orientation NEES values of FEJ2 are similar to FEJ and
OC, around 3, which verify our analysis that FEJ2 is a
consistent estimator. We note that both the orientation and
position NEES values of FEJ2 are smaller than those of OC
and FEJ, which further verify our analysis that FEJ2 has
a larger covariance than FEJ. Hence, FEJ2 should be more
conservative and make the system less sensitive to noise.

B. MSCKF-VIO Simulation
In this section, we present the estimation performance

within a hybrid MSCKF-based VIO system [10], [33] using
different simulation setups and measurement noises (shown
in Table II). Specifically, we first simulate monocular camera
measurements with relative low IMU noises, and then a
stereo camera with increased IMU noises to further challenge
the system.

Fig. 3: IMU pitch angle errors (solid lines) and ±3σ bounds (dashed
lines) for udel gore simulations using stereo measurements and 2 pixel
measurement noise with different estimators. Note that the ±3σ bounds
of the OC (black) and the FEJ (red) are almost identical.

Fig. 3 shows a representative IMU orientation angle esti-
mation error and the corresponding 3σ bounds of uncertainty
with stereo camera using different VINS estimators for a
single run. As evident, the standard (STD) estimator is
inconsistent with estimation errors frequently out of the 3σ
bounds. The errors for OC, FEJ and FEJ2 are within their
3σ bounds, indicating their consistency, the 3σ bounds of
FEJ2 are slightly broader than the others, showing that FEJ2
is more conservative. These results strengthen our claim that
FEJ2 has larger system covariance estimation (Lemma 3.2).

50 run Monte-Carlo simulations are also conducted. Fig. 2
shows the averaged NEES and RMS errors of robot pose with
stereo measurements under 2 pixel noise values. While Table
III presents the average values of RMSE and NEES when
measurement noise are 1 and 3 pixel with both monocular
and stereo measurements. Note that in stereo and monocular
simulations, different IMU noises are used as showed in
Table II.

When measurement noises are small, the average RMSE
of OC, FEJ and FEJ2 are very similar to each other since the
linearization errors are also small. In the meanwhile, standard
(STD) VINS, which is inconsistent, performs the worst with
largest estimation errors. When we increase measurement
noises, the linearization errors will become more influential
and we can observe more apparent accuracy improvements of
the FEJ2 compared to other VINS estimators. When testing
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TABLE II: Key simulation and estimator parameters
for each sensor.

Parameter Values
mono / stereo

Traj. Length (m) 225
IMU Freq. (hz) 400

Camera Freq. (hz) 10
No. SLAM Feat. 50 / 60
Camera Clones 11

Gyro. White Noise 1.6968e-04 / 1.6968e-03
Gyro. Random Walk 1.93963e-05 / 1.93963e-04
Accel. White Noise 2.0000e-03 / 2.0000e-02

Accel. Random Walk 3.0000e-03 / 3.0000e-03

TABLE III: The average RMSE and NEES over 50 Monte-Carlo simulations with simulated
monocular and stereo measurements with 1 and 3 pixel noise models.

Noise
(pixel) Est. RMSE Ori. (deg)

mono / stereo
RMSE Pos. (m)

mono / stereo
NEES Ori.

mono / stereo
NEES Pos.

mono / stereo

1

STD 0.412 / 0.344 0.130 / 0.109 23.874 / 15.447 4.911 / 4.874
OC 0.242 / 0.257 0.119 / 0.100 3.290 / 3.599 3.540 / 3.416
FEJ 0.242 / 0.256 0.120 / 0.100 3.284 / 3.438 3.617 / 3.322
FEJ2 0.238 / 0.238 0.118 / 0.095 3.150 / 3.324 3.443 / 2.965

3

STD 2.139 / 0.888 0.402 / 0.310 407.221 / 33.852 13.212 / 7.235
OC 0.716 / 0.723 0.301 / 0.300 3.964 / 4.395 5.051 / 4.839
FEJ 0.861 / 0.704 0.289 / 0.298 4.965 / 4.163 4.763 / 4.656
FEJ2 0.650 / 0.663 0.264 / 0.277 3.198 / 3.790 3.581 / 3.636

with unrealistic noise (i.e., 8 pixel), FEJ and OC diverge
quickly due to the large linearization errors, while FEJ2 can
still work and outperform the others.

V. REAL-WORLD EXPERIMENTS

Building upon OpenVINS [10], we further test our FEJ2
based VINS estimators on the Euroc Mav dataset [34]
and TUM-VI dataset [35] with both monocular and stereo
configurations. Due to the space limitation, we refer our tech-
report for more results [27]. In the experiments, we keep 11
clones and at most 50 SLAM features in the state vector.
For other tracked features we perform MSCKF update and
marginalize them out of state vectors. All estimators were run
ten times on each dataset to compensate for randomness and
the averaged Absolute Trajectory Error (ATE) [32] values are
reported . The results are shown in Table IV. It is clear that
OC, FEJ and FEJ2 produce smaller ATE than the standard
EKF. Although these three consistent estimators performe
very close to each other, FEJ2 still achieves better accuracy
on average, especially in monocular camera scenarios. Com-
pared with stereo, FEJ and OC are more likely to suffer from
bad feature triangulation due to less visual constraints in the
monocular case. This leads to relatively larger linearization
errors, which FEJ2 has focused on. These results, along

with those from Monte-Carlo simulations presented in the
previous section, support that our proposed FEJ2 improves
the VINS estimators in both consistency and accuracy.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we develop FEJ2, which is a novel consistent
estimator design for VINS. After studying in depth the issues
of FEJ-VINS algorithm, we propose to accurately model lin-
earization errors by projecting the measurement residual onto
the left nullspace of the error Jacobian. Theoretical proofs
are also given to demonstrate this operation keeps the correct
unobservable subspace and compensates linearization errors,
thus, improve the performance. We implement FEJ2-VINS,
results from extensive Monte-Carlo simulations with differ-
ent configurations and real-world experiments on different
datasets show the proposed FEJ2 can achieve better accuracy
and consistency than other state-of-the-art estimators. In the
future, plan to investigate how to leverage different feature
representations and ramifications of online sensor calibration.

Fig. 2: The average RMSE and NEES over 50 Monte-Carlo simulation for IMU orientation and position with stereo measurements and 2 pixel noises.

TABLE IV: Absolute trajectory error (ATE) for each estimator in units of degree/meters averaged over 10 runs.

Est. V1 01 easy V1 02 med. V1 03 dif V2 01 easy V2 02 med. V2 03 dif. MH 01 easy MH 02 easy MH 03 med. MH 04 dif. MH 05 dif.

m
on

o

STD 0.956 / 0.076 1.783 / 0.080 2.638 / 0.074 0.951 / 0.098 1.856 / 0.085 1.415 / 0.154 1.958 / 0.246 2.337 / 0.275 1.355 / 0.155 1.640 / 0.306 1.872 / 0.438
OC 0.554 / 0.077 0.615 / 0.071 2.933 / 0.068 0.880 / 0.093 1.595 / 0.077 1.835 / 0.188 1.346 / 0.190 1.121 / 0.161 1.580 / 0.162 1.114 / 0.277 1.124 / 0.421
FEJ 0.872 / 0.056 0.574 / 0.052 2.079 / 0.096 0.928 / 0.092 1.599 / 0.074 1.874 / 0.168 1.556 / 0.107 0.920 / 0.156 1.204 / 0.142 1.109 / 0.261 1.212 / 0.347

FEJ2 0.679 / 0.053 0.564 / 0.059 2.346 / 0.061 0.791 / 0.101 1.233 / 0.047 1.808 / 0.146 1.503 / 0.098 0.740 / 0.105 1.137 / 0.142 0.783 / 0.282 1.145 / 0.391

st
er

eo

STD 0.792 / 0.061 1.958 / 0.059 2.551 / 0.053 1.078 / 0.055 1.693 / 0.064 2.337 / 0.077 1.656 / 0.183 2.185 / 0.215 1.641 / 0.115 1.331 / 0.223 2.042 / 0.352
OC 0.615 / 0.071 1.772 / 0.046 2.468 / 0.045 1.098 / 0.059 1.231 / 0.051 1.052 / 0.061 1.606 / 0.123 1.136 / 0.161 1.007 / 0.183 1.151 / 0.289 0.899 / 0.288
FEJ 0.547 / 0.052 1.702 / 0.079 2.498 / 0.045 1.172 / 0.058 1.268 / 0.049 1.118 / 0.058 1.102 / 0.117 0.968 / 0.142 1.157 / 0.157 1.090 / 0.214 1.288 / 0.208

FEJ2 0.564 / 0.059 1.770 / 0.045 2.503 / 0.047 0.975 / 0.053 1.202 / 0.047 1.101 / 0.062 1.193 / 0.070 1.366 / 0.174 1.824 / 0.138 1.038 / 0.273 1.124 / 0.163
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generic sensor fusion algorithms with sound state representations
through encapsulation of manifolds,” Information Fusion, vol. 14,
no. 1, pp. 57–77, Jan. 2013.

[27] C. Chen and G. Huang, “FEJ2-EKF: A consistent estimator for slam
(technical report),” University of Delaware, Tech. Rep. RPNG-2022-
FEJ2, 2022. [Online]. Available: http://udel.edu/∼ghuang/papers/
tr fej2.pdf

[28] P. S. Maybeck, Stochastic Models, Estimation, and Control. London:
Academic Press, 1979, vol. 1.

[29] A. Martinelli, “State estimation based on the concept of continuous
symmetry and observability analysis: The case of calibration,” IEEE
Transactions on Robotics, vol. 27, no. 2, pp. 239–255, 2011.

[30] G. Huang, M. Kaess, and J. Leonard, “Towards consistent visual-
inertial navigation,” in Proc. of the IEEE International Conference on
Robotics and Automation, Hong Kong, China, May 2014, pp. 4926–
4933.

[31] Y. Yang, J. Maley, and G. Huang, “Null-space-based marginalization:
Analysis and algorithm,” in Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems, Vancouver, Canada, Sep. 2017, pp.
6749–6755.

[32] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory
evaluation for visual (-inertial) odometry,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2018, pp. 7244–7251.

[33] M. Li and A. I. Mourikis, “Optimization-based estimator design for
vision-aided inertial navigation,” in Robotics: Science and Systems,
Berlin, Germany, June 2013, pp. 241–248.

[34] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The euroc micro aerial vehicle datasets,”
The International Journal of Robotics Research, vol. 35, no. 10, pp.
1157–1163, 2016.

[35] D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stückler, and D. Cre-
mers, “The tum vi benchmark for evaluating visual-inertial odometry,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 1680–1687.

9512

Authorized licensed use limited to: Apple. Downloaded on July 30,2023 at 23:39:34 UTC from IEEE Xplore.  Restrictions apply. 


