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1 Introduction and Related Work

It is conceivable that thousands of autonomous vehicles will be operated in a
wide range of civilian and military application domains, such as self-driving cars,
unmanned aerial vehicles (UAVs), and autonomous underwater vehicles (AUVs).
However, current onboard navigation systems for these vehicles are often vulnerable
to malicious attacks—that is, terrorists and criminals may easily hijack vehicles to
attack the public. While the study of secure control has made important advances
over the past few years, the vast majority of this literature focuses on cyber attacks.
However, sensor attacks—manipulating physical fields such as electromagnetic and
pressurewhich aremeasured by sensors and/or directly compromisingmeasurements
even if communication is secure (e.g. see [1, 2])—pose a more menacing threat to
autonomous navigation systems.

In particular, secure state estimation and control in cyber-physical systems has
gained significant attention (e.g., [3–8]), because it was realized that adversarial
attacks on sensors truly occur in real life. For example, the first-time-ever attack
(Stuxnet) on the Supervisory Control And Data Acquisition (SCADA) system was
found in 2010 [9], where sensor measurements were replaced by previously recorded
data and fed to the controller, thus leading to possible catastrophic damages; false
data can be injected into smart power grids [10]; and an attacker can spoof the GPS
to misguide an $80 million yacht off route [11].

To secure state estimation in linear dynamical systems, one can formulate a non-
convex �0-minimization problem when sensor measurements are either noise-free
[3, 4] or being corrupted by noise [6], which is then relaxed into a convex �r/�1 (sum
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of �r norms) problem. In particular, Fawzi et al. [4] studied the secure estimation
problem for a noiseless linear time invariant (LTI) system with a fixed set of attacked
sensors which are less than one half of the total number of sensors, but the attack sig-
nals can be arbitrary. Pajic et al. [12, 13] extended [4] to noisy system with bounded
noise assumption, and proved that the worst-case estimation error of their algorithms
is linear with the bound of the noise. If there is no (processing) resource constraint, a
minimax optimization can be formulated to construct an optimal estimator by min-
imizing the worst-case mean square error against all possible attacked sensors and
all possible sensor noise [5, 8]. Moreover, in [3, 14] a complete set of fault-monitor
filters are generated to detect the existence of an attack. However, if only an upper
bound on the number of the attacked sensors is available, this method is not scalable
since the number of monitors is combinatorial in the size of the attacked sensors.
In [14] observability analysis was also performed for a linear system under attacks,
showing that the system is observable if and only if less than a half of the sensors are
attacked. In robotics, Bezzo et al. [15] introduced a secure Kalman filter (KF) for the
LTI system by inflating the covariance of attacked sensors’ measurements. Recently,
Hu et al. [16] addressed secure localization for UAVs by using error correction tech-
niques [17] to identify the attack signals based on the sparse attack assumption but
relaxing the assumption of a fixed set of attack sensors and allowing different sets
of sensors to be attacked each time. Additionally, in noise-free cases, Satisfiability
Modulo Theory (SMT)-based algorithms can also be employed to detect and iso-
late the compromised sensors for both linear dynamical systems [7] and nonlinear
differentially flat systems [18].

In this paper, we seek to secure state estimation for stochastic nonlinear sys-
tems with the particular application to map-based localization. In particular, based
on the MCC-KF [19], we first perform in-depth analysis of the maximum corren-
tropy criterion (MCC)-based EKF. Then, we analytically derive the weighted MCC-
EKF (WMCC-EKF) that shows to improve accuracy and robustness to unbounded
attacks as compared to the state-of-the-art methods. Different with [20], the proposed
WMCC-EKF is derived for nonlinear measurement model and the weights are deter-
mined partially according to the known noise level. Furthermore, as a conservative
solution, we generalize the secure estimation algorithm [16] to nonlinear systems
and develop the Secure Estimation (SE)-EKF that integrates the attack detection
within a sliding-window filtering framework. The proposed secure EKFs are vali-
dated through both Monte-Carlo simulations and experiments on real datasets.

2 Problem Statement

Consider a nonlinear system with measurements possibly attacked by adversaries:

xk+1 = f(xk,wk) (1)

yk+1 = h(xk+1) + nk+1 + ak+1 (2)

zk+1 = yk+1 − ak+1 = h(xk+1) + nk+1 (3)
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where xk ∈ R
m×1 represents the system states at the time step k, f represents the

system dynamic model and w is the input white Gaussian noise with covariance
Q. y ∈ R

p×1 denotes the measurements from p sensors, h represents the nonlinear
measurement model function. a ∈ R

p×1 denotes the attack signals and is assumed to
be sparse vector that at least one sensor cannot be attacked. We also define z ∈ R

p×1

as the un-attacked output. n ∈ R
p×1 represents zero-mean Gaussian white noises

with covariance R = diag{σ 2
1 . . . σ 2

i . . . σ 2
p}, where σi , i = 1 . . . p represents the i-

th sensor’s noise variance and diag{·} is the diagonal matrix form. If the R is a full
(not diagonal or block diagonal) matrix, a noise pre-whitening operation (see [21])
can be performed to transform R into diagonal form. The corresponding linearized
system can be computed as follows:

x̃k+1 � Fk x̃k + Gkwk (4)

ỹk+1 � Hk+1x̃k+1 + nk+1 + ak+1 (5)

z̃k+1 � Hk+1x̃k+1 + nk+1 (6)

where x̃ = x − x̂ denotes the error states, the Fk and Gk represent the Jacobians
regarding to the state xk and the noise wk respectively. ỹ denotes the measurement
residual, while z̃ describes the un-attacked measurement residual. Hk+1 represents
the measurement Jacobian with respect to the state xk+1.

2.1 Map-Based Localization with Malicious Attacks

While this paper particularly focuses on 2Dmap-based localization as an example to
illustrate the key ideas of our proposed secure estimators, the methodology is general
and readily applicable to other systems. Specifically, in map-based localization, the
dynamic motion model of the robot pose is given by:

ẋ =
[
ṗR

φ̇

]
=

⎡
⎣ẋ
ẏ
φ̇

⎤
⎦ =

⎡
⎣v cos(φ)

v sin(φ)

ω

⎤
⎦ =

⎡
⎣cos(φ)

sin(φ)

0

⎤
⎦ v +

⎡
⎣00
1

⎤
⎦ω (7)

where v is the linear velocity and ω is the angular velocity of the robot. pR and φ

denote the position and orientation of the robot, respectively. Note that we assume
a more challenging localization scenario than [13, 16] that the robot does not have
access to GPS signals. Instead, only the relative range and bearing measurements of
the features are available for localization, and the measurements can be described
as:

h(x) =
[
h(r)(x)
h(b)(x)

]
+ a =

[ √
spf�spf

arctan
(

s yf
s xf

)
]

+ a (8)
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whereh(r) andh(b) represent the range and bearingmeasurements respectively. Given
the rotation matrix C(φ) between global and sensor frames, spf = [s xf s yf ]� =
C(φ) (pf − pR) represents the map feature in the sensor frame of reference.

It is important to note that, instead of assuming a fixed set of attacked sensors [4,
12], we consider that the attacker can attack different sensors randomly at different
time steps [see (54)]. Note also that as compared to [15, 16], instead of assuming
that less than a half of the sensors can be attacked, we only assume that at least
one bearing or range sensor is not attacked. Moreover, attack signals can even go
unbounded—that is, someof the sensor attacksai (i ∈ {1 . . . p})might gounbounded,
i.e., ‖ai‖ → ∞.

3 Maximum Correntropy Criterion (MCC)-Based Filters

In this section, we present in detail our secure filters based on the maximum corren-
tropy criterion. The correntropy can be defined as a statistical metric of similarity
between two random variables [19], and one can pose a cost function Jm for robust
filters based on the correntropy with Gaussian kernels as follows:

Jm(xk+1) = Gσ

(
‖yk+1 − h(xk+1)‖R−1

k+1

)
+ Gσ

(
‖xk+1 − f(xk, 0)‖P−1

k+1|k

)
(9)

where Gσ is the Gaussian kernel in the form of Gσ (‖xi − yi‖) = exp(−‖xi−yi‖2
2σ 2 )

with σ as bandwidth, Pk+1|k is the propagated covariance [see (11)]. Minimization
of the cost function (9) can lead to the derivation of correntropy based filters [19].
Correntropy based filter is proved to be robust when having large disturbances or
outliers and can work well with non-Gaussian noise.

3.1 MCC-EKF

Based on [19, 22], we analytically derive the MCC-EKF for the case of nonlinear
systems such as map-based localization. In particular, given the initial state in the
form of Gaussian distribution, N (x̂0|0,P0), state estimate and covariance propaga-
tion based on the motion model (1) from time step k to k + 1 is:

x̂k+1|k = f(x̂k|k, 0) (10)

Pk+1|k = FkPk|kF�
k + GkQkG�

k (11)

Then, EKF-like update based on the measurement model (2) can be written as:

ŷk+1|k = ẑk+1|k = h(x̂k+1|k) (12)



Map-Based Localization Under Adversarial Attacks 779

dk+1 =
Gσ

(∥∥yk+1 − h(x̂k+1|k)
∥∥
R−1

k+1

)

Gσ

(∥∥x̂k+1|k − f(x̂k|k, 0)
∥∥
P−1
k+1|k

) (13)

Kk+1|k =
(
P−1
k+1|k + H�

k+1(dk+1R−1
k+1)Hk+1

)−1
H�

k+1(dk+1R−1
k+1) (14)

= Pk+1|kH�
k+1

(
Hk+1Pk+1|kH�

k+1 + d−1
k+1Rk+1

)−1
(15)

x̂k+1|k+1 = x̂k+1|k + Kk+1|k(yk+1 − ŷk+1|k) (16)

Pk+1|k+1 =
(
P−1
k+1|k + H�

k+1(dk+1R−1
k+1)Hk+1

)−1
(17)

where dk+1 is a ratio scalar computed from Gaussian kernel. Based on these deriva-
tions, the detailed MCC-EKF algorithm can be found in the companion technical
report [21]. With an in-depth inspection of the MCC-EKF, the updated covariance
(17) can also be written as:

Pk+1|k+1 = Pk+1|k − Pk+1|kH�
k+1S

−1
k+1|kHk+1Pk+1|k (18)

with the innovation covariance Sk+1|k defined as:

Sk+1|k = Hk+1Pk+1|kH�
k+1︸ ︷︷ ︸

S1

+ d−1
k+1Rk+1︸ ︷︷ ︸

S2

(19)

where S1 and S2 denote the covariance contribution from the motion (1) and mea-
surement (2), respectively. Note that theMCC-EKF can be viewed as using the scalar
dk+1 to control the covariance inflation from the attackedmeasurements. As shown in
(13), dk+1 decreases if system has been attacked, and the covariance contribution S2
will be increased [see(19)], implying that the measurement becomes more uncertain.
As a result, Sk+1|k and thus the updated state covariance Pk+1|k+1, will be inflated
due to (18). Lemma 1 summarizes our analysis:

Lemma 1 For the MCC-EKF, if the attack ak+1 goes unbounded, the filter will not
perform measurement update.

Proof If the attack goes unbounded, that is ‖ak+1‖ → ∞, then ‖yk+1 −
h(x̂k+1|k)‖R−1

k+1
→ ∞, and hence dk → 0. According to (14) and (16), Kk+1 → 0

and x̂k+1|k+1 → x̂k+1|k . Finally, with (17), Pk+1|k+1 → Pk+1|k .

This result essentially shows that the scalar dk+1 will dismiss all the observation
updates even if only one measurement is attacked at time step k + 1, which clearly
is too conservative. In order to enable the MCC-EKF to utilize the information
contained in un-attackedmeasurements, we propose theweightedMCC-EKFderived
from multiple Gaussian kernels.
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3.2 Weighted MCC-EKF

Compared to (9), we define the cost function for the maximum correntropy criterion
with multiple Gaussian kernels as:

J(xk+1) =
p∑

i=1

Gσ̂i,k+1

(∥∥yi,k+1 − hi,k+1(xk+1)
∥∥) + Gσ̂0,k+1

(∥∥xk+1 − f(x̂k|k, 0)
∥∥
P−1
k+1|k

)

(20)
where we have defined the Gaussian kernel Gσ̂i,k+1 and Gσ̂0,k+1 according to [19]:

Gσ̂i,k+1

(∥∥yi,k+1 − hi,k+1(xk+1)
∥∥) = exp

(
−
∥∥yi,k+1 − hi,k+1(xk+1)

∥∥2
2σ̂ 2

i,k+1

)
(21)

Gσ̂0,k+1

(∥∥xk+1 − f(x̂k|k, 0)
∥∥
P−1
k+1|k

)
= exp

⎛
⎝−

∥∥xk+1 − f(x̂k|k, 0)
∥∥2
P−1
k+1|k

2σ̂ 2
0,k+1

⎞
⎠ (22)

where σ̂i,k+1, i = 1 . . . p denotes the Gaussian kernel bandwidth of the i-th measure-
ment at time step k + 1, and σ̂0,k+1 denotes the Gaussian kernel bandwidth of the
motion model. yi,k+1 and hi,k+1(xk+1) represents the i-th row of yk+1 and hk+1. Aim-
ing to meet the maximum correntropy criterion, we linearize and take the derivatives
of the cost function J(xk+1) as:

∂J(xk+1)

∂ x̃k+1
� − 1

2

p∑
i=1

Gσ̂i,k+1

σ̂ 2
i,k+1

∂
(∥∥ỹi,k+1 − Hi,k+1x̃k+1

∥∥2)
∂ x̃k+1

− 1

2

Gσ̂0,k+1

σ̂ 2
0,k+1

∂

(∥∥x̃k+1
∥∥2
P−1
k+1|k

)

∂ x̃k+1
= 0

(23)
whereHi,k+1, i = 1 . . . p, represents each row of the JacobianHk+1 = ∂h

∂xk+1

∣∣
xk+1=x̂k+1

and x̃k+1 = xk+1|k − f(x̂k|k, 0) = xk+1 − x̂k+1|k . Then we can arrive at:

p∑
i=1

Gσ̂i,k+1

Gσ̂0,k+1

H�
i,k+1Hi,k+1

σ̂ 2
i,k+1

σ̂ 2
0,k+1

x̃k+1 −
p∑

i=1

Gσ̂i,k+1

Gσ̂0,k+1

H�
i,k+1

σ̂ 2
i,k+1

σ̂ 2
0,k+1

ỹi,k+1 + P−1
k+1|k x̃k+1 = 0 (24)

⇒
⎡
⎢⎣

p∑
i=1

Gσ̂i,k+1

Gσ̂0,k+1

H�
i,k+1Hi,k+1

σ̂ 2
i,k+1

σ̂ 2
0,k+1

+ P−1
k+1|k

⎤
⎥⎦x̃k+1 =

p∑
i=1

Gσ̂i,k+1

Gσ̂0,k+1

H�
i,k+1

σ̂ 2
i,k+1

σ̂ 2
0,k+1

ỹi,k+1 (25)

Then (25) can be written in matrix form as:

[
H�

k+1Dk+1R̂−1
k+1Hk+1 + P−1

k+1|k
]
x̃k+1 = H�

k+1Dk+1R̂−1
k+1ỹk+1 (26)

where we have defined di,k+1, Dk+1 and R̂k+1 as:



Map-Based Localization Under Adversarial Attacks 781

di,k+1 = Gσ̂i,k+1

(∥∥yi,k+1 − hi,k+1(xk+1)
∥∥)

Gσ̂0,k+1

(∥∥xk+1 − f(x̂k|k, 0)
∥∥
P−1
k+1|k

) (27)

Dk+1 = diag{d1,k+1, . . . , di,k+1, . . . , dp,k+1} (28)

R̂k+1 = diag{ σ̂
2
1,k+1

σ̂ 2
0,k+1

, . . . ,
σ̂ 2
i,k+1

σ̂ 2
0,k+1

, . . . ,
σ̂ 2
p,k+1

σ̂ 2
0,k+1

} (29)

Hence, the new state and covariance update can be expressed as:

x̂k+1|k+1 = x̂k+1|k +
[
H�

k+1Dk+1R̂
−1
k+1Hk+1 + P−1

k+1|k
]−1

H�
k+1Dk+1R̂

−1
k+1

(
yk+1 − ŷk+1|k

)
(30)

Pk+1|k+1 =
[
H�

k+1Dk+1R̂
−1
k+1Hk+1 + P−1

k+1|k
]−1

(31)

Up to this step, we have the new state update as (30), which is highly similar to (16).

Now comes how to choose appropriate bandwidths. We fixed the ratio of σ̂ 2
i

σ̂ 2
0
as σ 2

i ,
where σi denotes the standard deviation of the i-th measurement obtained from noise
covariance Rk+1. Therefore, R̂k+1 = Rk+1, and Dk+1 can just be seen as a weight
matrix for the measurement noise. During the implementation of the WMCC-EKF
[21], we choose σ 2

i = λσ σ̂ 2
i , with λσ ∈ (0.125, 0.5) which are shown to work well

in our simulation and experiments. Upon this choice, the state and covariance update
of the proposed WMCC-EKF can be finally described as:

Kk+1|k =
[
H�

k+1Dk+1R−1
k+1Hk+1 + P−1

k+1|k
]−1

H�
k+1Dk+1R−1

k+1 (32)

= Pk+1|kH�
k+1

(
Hk+1Pk+1|kH�

k+1 + Rk+1D−1
k+1

)−1
(33)

x̂k+1|k+1 = x̂k+1|k + Kk+1|k
(
yk+1 − ŷk+1|k

)
(34)

Pk+1|k+1 =
[
H�

k+1Dk+1R−1
k+1Hk+1 + P−1

k+1|k
]−1

(35)

Now we will inspect WMCC-EKF from an information perspective. Compared
to the MCC-EKF, the information matrix for the WMCC-EKF can be written as:

P−1
k+1|k+1 = P−1

k+1|k + H�
k+1(Dk+1R−1

k+1)Hk+1 = P−1
k+1|k︸ ︷︷ ︸
Σw1

+
p∑

i=1

di,k+1
H�

i,k+1Hi,k+1

σ 2
i,k+1︸ ︷︷ ︸

Σw2

(36)

whereΣw1 andΣw2 denote the information frommotion model (1) and the measure-

ment model (2), respectively. Note that di,k+1
H�

i,k+1Hi,k+1

σ 2
i,k+1

represents the information

contribution from the i-th sensor’s measurement, and thus, Σw2 in (36) can be seen
as the sum of single information matrix from all the p sensors. If the i-th sensor is



782 Y. Yang and G. Huang

attacked, di,k+1 will decrease exponentially and the corresponding information con-

tribution di,k+1
H�

i,k+1Hi,k+1

σ 2
i,k+1

will be dramatically reduced. However, this process will

not affect the information contribution from other sensors. Therefore, different from
the MCC-EKF, the WMCC-EKF is able to utilize the information from un-attacked
sensor measurements.

3.3 Convergence Analysis Under Unbounded Attacks

Inspired by [15], to further understand the proposed WMCC-EKF, we perform the
convergence analysis when the system is suffering from unbounded attacks. We
first define x̄k+1 as the state estimate with un-attacked measurement zk+1, and the
predicted measurement based on x̄k+1 can be denoted as:

z̄k+1 = h(x̄k+1) (37)

Hence, with (2) and (3), the update Eq. (34) can be rewritten as:

x̂k+1|k+1 = x̂k+1|k + Kk+1|k(zk+1 − z̄k+1 + h(x̄k+1) − h(x̂k+1|k) + ak+1) (38)

= x̂k+1|k + Kk+1|k(zk+1 − z̄k+1) + Kk+1|ksk+1 (39)

where sk+1 = h(x̄k+1) − h(x̂k+1|k) + ak+1 describes the difference of measurement
estimates from un-attacked and attacked measurements. Since sk+1 also includes the
attack vector ak+1, the term Kk+1|ksk+1 can be seen as Attack Innovation. We would
like to shrink this term, so that the attacked estimate x̂k+1|k+1 will approach the ideal
estimate x̄k+1 as close as possible. Interestingly, the WMCC-EKF can constrain the
attack innovation to a small bound even under unbounded attacks.

Lemma 2 Given an unbounded attack ak+1 and an arbitrarily small positive con-
stant value ξ , there exists a correntropy weight matrix Dk+1 for the WMCC-EKF
such that:

Pr
(∥∥Kk+1|ksk+1

∥∥2 ≤ ξ
)

> 99.7% (40)

Proof From (33), we can write attack innovation Kk+1|ksk+1 as:

∥∥Kk+1|ksk+1

∥∥2 = ∥∥Pk+1|kH�
k+1

∥∥2 ‖τ‖2 (41)

where we define τ = (
Hk+1Pk+1|kH�

k+1 + D−1
k+1Rk+1

)−1
sk+1. We can observe that in

oder to show bounded attack innovation, we only need to show that ‖τ‖ is bounded.
We consider the worst case and compute the boundary for ‖τ‖ as:
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‖τ‖2 ≤
∥∥∥(σ 2

minI + D−1
k+1Rk+1

)−1
sk+1

∥∥∥2 =
p∑

j=1

(
s j

σ 2
min + d−1

j σ 2
j

)2

(42)

We define the ideal estimate residual as z̃ j,k+1 = z j,k+1 − ẑ j,k+1, and z̃ j,k+1 ∼
N (0, σ̄ 2

j,k+1). Based on Gaussian distribution, we have:

Pr
(∥∥z̃ j,k+1

∥∥ ≤ 3σ̄ j,k+1
) = 99.7% (43)

Equation (43) indicates that
∥∥z̃ j,k+1

∥∥ is almost bounded by 3σ̄ j,k+1. If the j-th sensor
attack a j goes unbounded,

∥∥s j∥∥ → ∞ and hence
∥∥s j∥∥ > 3σ̄ j . Then, we drop the

timestamps for simplicity and arrive at:

[
s j

σ 2
min + d−1

j σ 2
j

]2

≤
⎡
⎢⎣ s j

σ 2
min + exp

(
(‖s j‖−‖z̃ j‖)2

2σ̂ 2
j

)
σ 2
j

⎤
⎥⎦

2

<
σ̂ 2
j

σ 4
j

ζ 2

[
exp

(
1
2 (ζ − μ)2

)]2
(44)

where ζ = ‖s j‖
σ̂ j

, andμ = 3 σ̄ j

σ̂ j
. Obviously, as

∥∥s j∥∥ → ∞, ζ → ∞, and the right side
of (44) will finally approach 0. Besides, if we take derivative of the right side of (44)

regarding to ζ , we can have the maximum value of (44) when ζ ′ = μ+
√

μ2+4
2 , that

is: [
s j

σ 2
min + d−1

j σ 2
j

]2

≤ σ̂ 2
j

σ 4
j

ζ ′2
[
exp

(
1
2 (ζ ′ − μ)2

)]2 (45)

Since ζ ′ is independent of the attack innovation s j , thus we can bound (45) by
appropriate design of bandwidth σ̂ j . According to (42) and (43), ‖τ‖2 is the summa-
tion of (45) and is bounded by the design of Dk+1 with probability 99.7%. In (41),∥∥Pk+1|kH�

k+1

∥∥2 is independent from the ak+1, and thus it is bounded. Therefore, we
can easily find a ξ that satisfies (40).

4 Secure Estimation (SE)-EKF

Ideally, we would like to identify the attacked measurements so that we can ensure
estimation security by excluding them from theEKFupdate. To this end,we introduce
the Secure-estimation (SE)-EKF by generalizing the SE-KF [16, 23] to the nonlin-
ear system under consideration. In particular, in order to detect sensor attacks, we
adopt the sliding-window strategy. Specifically, we construct a fixed-sized window
within EKF framework by stochastic cloning [24]. All the accumulated measure-
ments within the window are used for update at certain time step. After update, the
window will be cleared and start to accumulate new measurements again. We define
the state vector with window size N at time step k as:
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xck = [
x�
k x�

k−1 · · · x�
k−N+1 x

�
k−N

]�
(46)

where xk represents the current robot state, xk−i represents the cloned robot state at
time step k − i, i ∈ {1 . . . N }. Thus, xk−N is the oldest cloned state. Similar to SE in
[16], after we have cloned N robot states in the state vector and accumulated their
measurements, we can linearize and stack all the measurements together as:

⎡
⎢⎢⎢⎣

z̃k
z̃k−1

...

z̃k−N

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

Hk

Hk−1
...

Hk−N

⎤
⎥⎥⎥⎦ x̃ck +

⎡
⎢⎢⎢⎣

nk
nk−1

...

nk−N

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

ak
ak−1

...

ak−N

⎤
⎥⎥⎥⎦ (47)

According to the linearized motion model (4), within the sliding-window, we have

x̃k = Fk−1 · · ·Fk−N x̃k−N = Fk−1,k−N x̃k−N (48)

where Fk−1,k−N = Fk−1 · · ·Fk−N represents the state transition matrix from cloned
state x̃k−N to the current robot state x̃k . Thus, (47) can be written as:

⎡
⎢⎢⎢⎣

z̃k
z̃k−1

...

z̃k−N

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Z̃

�

⎡
⎢⎢⎢⎣

H0

Hk−1
...

Hk−N

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Fk,k−N

Fk−1,k−N
...

I

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Φ

x̃k−N +

⎡
⎢⎢⎢⎣

n0
nk−1

...

nk−N

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

a0
ak−1

...

ak−N

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
E

(49)

where Z̃ represents the stacked measurement residuals, and E denotes the sum of
stacked noise and attack vectors, Φ denotes the stacked state transition matrix from
x̃k−N to each state in thewindow. Similar to [16, 23]we apply left null space operation
to Φ to simplify (49). Let Un be the left null space of Φ, that is U�

n Φ = 0, then we
can have:

Zo = U�
n Z = U�

n E (50)

where Un can be computed from the QR decomposition of Φ as:

Φ = UeRΔ = [
Ue Un

] [RΔ

0

]
(51)

Given the strong sparse attack assumption that less than a half of the all the sensors
can be attacked, E can be solved by formulating the following optimization problem
with �1 norm regularization [25] as:

Ê = argmin
E

[∥∥Zo − U�
n E

∥∥2
2 + λ ‖E‖�1

]
(52)

where λ is the regularization parameter.
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Different from [16], we here consider a nonlinear model and thus, the sparsity
of E will be contaminated by linearization errors and noises. Therefore, the �1-
optimization solution Ê from (52) will not be perfectly sparse. In order to minimize
this side effect, we propose to set a threshold t for Ê to enforce the sparsity. Let ei
denotes the i-th element in E, and if ei < t , we set ei = 0 and assume no attack to
the i-th element; otherwise ei will keep its value and the i-th element is labeled as
attacking signal. Let ai and ni denote the corresponding i-th element of the noise
and attack vector respectively. If the i-th measurement is not attacked (ai = 0), then:

‖ei‖ = ‖ni + ai‖ ≤ ‖ni‖ + ‖ai‖ ≤ ‖ni‖ (53)

Based on the white Gaussian noise assumption [i.e., ni ∼ N (0, σ 2
i )], we have

Pr(‖ni‖ ≤ 3σi ) = 99.7%. Considering the linearization errors, we set the threshold
ti = λtσi where λt ∈ (3, 6) is used in our simulations. With the attack identification,
the SE-EKF algorithmwill be able to remove the attackedmeasurements and perform
the state update only with un-attacked measurements [21].

5 Simulation Results

To validate the proposed secure estimators, we consider a map-based localization
scenario where a mobile robot moves in a circle trajectory. There are 120 landmarks
randomly generated near the trajectory as the map. We assume that the robot is
equipped with 4 sensors: 2 range sensors and 2 bearing sensors, and these sensors
collect independent range and bearing measurements of the map points when the
robot is moving on the trajectory.

Moreover, we consider 3 different attack modes (54), where Attack Mode i(i =
1 . . . 3) represents the attack signals received by the 4 sensors, and each column
represents a time step. a∗ denotes non-zero arbitrary or unbounded attack signals
and 0 indicates no attack. Note that at each time step the senors might be attacked
with the probability from 33% to 50%. If attacked, there are i attacked sensors for
Attack Mode i , and the set of attacked sensors are changing randomly over time.

Sensor 1 : range
Sensor 2 : bearing
Sensor 3 : range
Sensor 4 : bearing

⎫⎪⎪⎬
⎪⎪⎭

⇐

⎡
⎢⎢⎣
a∗ 0 0 0 · · ·
0 0 0 a∗ · · ·
0 a∗ 0 0 · · ·
0 0 a∗ 0 · · ·

⎤
⎥⎥⎦

︸ ︷︷ ︸
Attack Mode 1

,

⎡
⎢⎢⎣
a∗ a∗ 0 0 · · ·
a∗ 0 0 a∗ · · ·
0 a∗ a∗ 0 · · ·
0 0 a∗ a∗ · · ·

⎤
⎥⎥⎦

︸ ︷︷ ︸
Attack Mode 2

,

⎡
⎢⎢⎣
a∗ a∗ 0 a∗ · · ·
a∗ 0 a∗ a∗ · · ·
a∗ a∗ a∗ 0 · · ·
0 a∗ a∗ a∗ · · ·

⎤
⎥⎥⎦

︸ ︷︷ ︸
Attack Mode 3

(54)
We also define 3 types of attack distribution: constant attack a∗ = c, uniform attack
a∗ ∼ U [−c, c], and the Gaussian distribution a∗ ∼ N (0, c2). For the results pre-
sented below, c is set to 1 m for range measurement and is 0.5 for bearing measure-
ment if not specified.
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Fig. 1 Comparison of the Standard EKF, MCC-EKF, WMCC-EKF, Sliding Window-EKF and
SE-EKF under attacks

Figure1 shows the estimation errors of the Standard EKF, MCC-EKF, WMCC-
EKF, Sliding Window-EKF and SE-EKF. The attacks are following Attack Mode 1
with constant attacks. We can see that the Standard EKF and Sliding Window-EKF
have failed. Although the MCC-EKF can still work, the accuracy is much worse
than that of the WMCC-EKF and the SE-EKF, which demonstrates the superior
performance of the proposed estimators.

Note the SE can have stable performance [16] if and only if the attacked sensors
number satisfies q ≤ p/2 − 1, where p is the number of sensors and q is the number
of attacked sensors. But we have relaxed this assumption for the WMCC-EKF, and
Monte-Carlo tests are performed with different numbers of attacked sensors to test
the full capacity of these proposed algorithms. Figure2 shows the results of 50
Monte-Carlo runs with constant attacks of Attack Mode 1, 2 and 3. Normalized
estimation error squared (NEES) and root mean square error (RMSE) [26] are used
for evaluating the estimation consistency and accuracy. Clearly, the SE-EKF can
only work when one of the four sensors is attacked, which conforms to [16]. In
contrast, the WMCC-EKF can still perform well even when there are three out of
four randomly attacked sensors.

We have also implemented the EKF with Mahalanobis-distance (M-distance) test
for outliers rejection, and compared its performance with the WMCC-EKF. The
M-distance test is a common outliers rejection strategy, given by:

dm = r�S−1r (55)

where r is the measurement residual and S is the corresponding innovation covari-
ance. The dm is assumed to follow the χ2 distribution, thus we can define a threshold
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Fig. 2 Full capacity test of the WMCC-EKF and SE-EKF in 50 Monte-Carlo simulations

Fig. 3 a Comparison of the WMCC-EKF and M-distance EKF under attacks; b Performance of
WMCC-EKF with Gaussian, uniform and constant attacks

γ for dm to identify outliers. We perform 50 Monte-Carlo runs (Fig. 3) with both
the WMCC-EKF and the M-distance based EKF. Note that the Attack Mode 1 with
constant attack is applied, and the overall average NEES for the WMCC-EKF is
approximately 2.97 while for M-distance based EKF is around 4.16. This shows
that the proposed WMCC-EKF achieves better consistency than the M-distance test
based EKF. In addition, the WMCC-EKF is shown to achieve slightly better estima-
tion accuracy.
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Fig. 4 Estimated trajectories of the WMCC-EKF, SE-EKF and the Standard EKF with synthetic
attacks on the Victoria Park dataset

6 Experimental Results

We further test the proposedWMCC-EKF and SE-EKFwith theVictoria Park dataset
[27], which includes wheel odometry and 2D range-bearing observations to land-
marks (trees). Specifically, we first run a batch MAP optimization using GTSAM
[28] to generate both the car trajectory and the map, which are used as the ground
truth. Based on this map, we validate our proposed algorithms for map-based local-
ization. During the test, we synthetically add random attacks to the range-bearing
measurements with 20% probability at each time step. Both range and bearing attack
signals follows a uniform distribution, with magnitude c of 15m for range and 0.5 for
bearing, respectively. It is clear from Figs. 4 and 5 that the green trajectory estimated
by the Standard EKF is not acceptable, while the blue and red trajectories estimated
by the proposed WMCC- and SE-EKF are close to the true trajectory, which verify
that the proposed algorithms are able to secure the robot localization.

7 Conclusions and Future Work

In this paper, we have developed the weighted MCC-EKF to secure state estima-
tion for stochastic nonlinear systems under adversarial attacks. The key idea of this
method is to design proper weights to inflate the possibly-compromised measure-
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Fig. 5 Estimation errors of theWMCC-EKF, SE-EKF and the Standard EKFwith synthetic attacks
on the Victoria Park dataset

ments. Moreover, we have also extended the SE-KF from linear to nonlinear cases
and proposed the SE-EKF within the sliding window filtering framework to identify
the attacked measurements and remove them from the EKF update. The proposed
algorithms have been extensively validated by Monte-Carlo simulations and exper-
iments on a real dataset. Currently we extend the current work on 2D map-based
localization to 3D simultaneous localization and mapping (SLAM). We will also
investigate the signal spoofing for commonly-used sensors in SLAM, such as GPS,
cameras, lidars and sonars.
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