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Abstract— Batch optimization based inertial measurement
unit (IMU) and visual sensor fusion enables high rate localiza-
tion for many robotic tasks. However, it remains a challenge to
ensure that the batch optimization is computationally efficient
while being consistent for high rate IMU measurements without
marginalization. In this paper, we derive inspiration from
maximum likelihood estimation with partial-fixed estimates
to provide a unified approach for handing both IMU pre-
integration and time-offset calibration. We present a modu-
larized analytic combined IMU integrator (ACI2) with elegant
derivations for IMU integrations, bias Jabcobians and related
covariances. To simplify our derivation, we also prove that
the right Jacobians for Hamilton quaterions and SO(3) are
equivalent. Finally, we present a time offset calibrator that
operates by fixing the linearization point for a given time
offset. This reduces re-integration of the IMU measurements
and thus improve efficiency. The proposed ACI2 and time-offset
calibration is verified by intensive Monte-Carlo simulations
generated from real world datasets. A proof-of-concept real
world experiment is also conducted to verify the proposed ACI2
estimator.

I. INTRODUCTION AND RELATED WORK

Precise 6DOF localization is essential for complex ma-
nipulation and navigation tasks in robotics. In recent years,
robot localization is performed using the high frequency
instantaneous rate measurements provided by an Inertial
Measurement Unit (IMU). However, due to the incremental
nature of the measurements provided by the IMU, the local-
ization estimates accumulate error over time. Hence, mea-
surements from other exteroceptive sensors, such as optical
cameras [1]–[6], RGBD sensors [7], [8], LIDAR [9]–[11],
underwater sonar [12], event cameras [13] etc are combined
with IMU measurements to achieve better accuracy and
consistency.

Among the different sensors that can be combined with
the IMU, camera has gained prominence due to its easy
availability and low cost. Hence, algorithms for visual-
inertial navigation system (VINS) such as [2], [14], [15] have
gained prominence in recent years.

The fusion of IMU and vision sensor is performed using
either non-linear filtering [1], [16]–[18] or non-linear batch
optimization [2], [5], [6], [15] approaches. Filter based
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Fig. 1: In contrast to previous approaches, ACI2 shares
analytical components and correctly accounts for correlation
between navigation & bias states.

methods enable faster algorithms but suffer from reduced
accuracy due to accumulation of linearization errors, while
optimization based methods provide better accuracy at the
cost of higher computational requirements.

In spite of the recent advances in VINS, there still remain
challenges to robustly incorporate high rate IMU measure-
ment into the optimization framework for localization [19],
[20]. This is further aggravated in resource constrained
systems without dedicated time synchronization capabilities.

In this regard, Leutenegger et al. [2] proposed a keyframe
based visual-inertial odometry system (OKVIS). In OKVIS,
the IMU measurements were re-integrated between con-
secutive frames in the local window. This re-integration
increased the computational requirements during batch op-
timization. To tackle the problem of repeated re-integration,
Lupton et al. [21] introduced pre-integration using Euler
angle representation. Later, Forster et al. [6] applied pre-
integration on SE(3) manifold and leveraged the null-space
operation based [22] structure-less factor graph [23] to design
efficient visual-inertial odometry system. Similarly, Qin et
al. [3] derived pre-integration with Hamilton quaternion and
build an efficient visual-inertial simultaneous localization
and mapping (VI-SLAM) system. Unlike [6], they stored
key visual features as anchored depth in the state vector.
This enabled their system to handle more features and
perform loop closure. However, both [6] and [3] performed
pre-integrations based on the first-order approximation of
the discrete IMU dynamic model [2], [24], which suffers
from errors in integration accuracy. Recently, Eckenhoff
et al. [5] proposed a continuous-time IMU pre-integration
(CPI) and built two estimator models based on piece-wise
constant acceleration measurement assumption and constant
true acceleration assumption, respectively. However, their
approach requires solving an Ordinary Differential Equation
(ODE) based on the IMU dynamic model. This introduced
additional complexity in the expressions for IMU integration,
bias Jacobians and measurement covariances.

Also in resource constrained applications, time synchro-
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nization is included into the estimation framework. This
introduces additional parameters in VINS [10], [25]–[27].
The time offset parameter introduced, triggers re-integration
of the IMU measurements each time a new offset estimate
is generated in the batch optimization based VINS. Qin
et al. [26] incorporated the time synchronization into their
estimator [3] by using a modified visual observation model.
The visual observation model introduced a constant-pixel-
velocity corresponding to time offset. However, the mea-
surement covariances for the constant-pixel-velocity model
is difficult to quantify. In addition, their approach is sensitive
to camera frame rates and is not extensible to other sensors
like LIDAR or sonar. On the other hand, Gentil et al. [10]
incorporated the time synchronization into the IMU pre-
integration. The drawback to this approach is that it is IMU
dependent and does not scale well to systems with multiple
sensors in addition to the IMU.

In this paper, we present an elegant approach to reduce
computational complexity while maintaining consistency in
batch optimization based VINS. Our approach derives inspi-
ration from MLE with partial-fixed estimates to provide a
unified approach for handing both IMU pre-integration and
time-offset calibration. Our IMU integrator uses an analytical
and modularized method for the integration, computation of
state Jacobians and propagation of related measurement co-
variances. In contrast to the recent pre-integration approach
proposed by [5], our approach computes 4 integration com-
ponents for each IMU time step (Fig. 1). These components
are shared to reduce the computation time for Jacobians and
measurement covariances calculation. Compared to [6], when
we compute the IMU integrated covariances, we combine the
IMU navigation states and bias states. Thus, the correlation
between these is preserved.

Our online time-offset calibrator, treats the time offset
as a random walk similar to [28]. However, to avoid the
IMU re-integration, we fix the initial estimate of the time
offset in the measurement model and add cost correction
terms to the objective function. In contrast to previous
approaches, no constant-pixel-velocity assumption is needed
and the proposed approach can be easily extended to multiple
sensors.

In summary, the contributions of this paper can be listed
below:

• A modularized analytic combined IMU integrator
(ACI2), with analytic pre-integrated IMU measure-
ments, bias Jacobians and covariances. We also inves-
tigate the equivalence of right Jacobians for Hamilton
quaternion and SO(3) to simplify the derivations.

• An online time-offset calibration method for batch opti-
mization based VINS with reduced IMU re-integration.

• Intensive Monte-Carlo simulations to compare different
IMU integrators and validate the proposed time offset
calibration.

II. PROBLEM FORMULATION

Occasionally, certain parameters’ linearization points in
maximum likelihood estimation (MLE) need to be fixed to
achieve higher efficiency (e.g., biases in pre-integration [6],

iSAM [29]) or better consistency [30]. Following this di-
rection, we introduce the MLE with partial-fixed-estimate
estimator. We will provide a unified theoretical foundation
for the proposed ACI2 and time offset calibration.

A. MLE with Partial-Fixed Estimates
Given a measurement containing state xa and xb as:

z = h(xa,xb) + n (1)

with n ∼ N (0,R). Note that xb is fixed with certain
linearization point during linearization. A weighted least-
squares cost function can be formulated as:

C(xa,xb) = ‖z− h(xa,xb)‖2R−1 (2)
x∗a,x

∗
b = arg min

xa,xb
C(xa,xb) (3)

If we define x̂ as current estimate and x̃ = x − x̂ as error
states, then we have:

xb = x̂b + x̃b = x̂
(0)
b + x̃

(0)
b ⇒ x̃

(0)
b = ∆xb + x̃b (4)

where we have defined ∆xb = x̂b − x̂
(0)
b and x̂

(0)
b is the

fixed linearization point. If using iterative algorithms (e.g.,
Gaussian-Newton method) to solve (3), we can linearize the
observation (1) with current best estimate of x̂a and the fixed
estimate of x̂

(0)
b . If we denote Ha , Ha|x̂a,x̂(0)

b

and Hb ,

Hb|x̂a,x̂(0)
b

for simplicity, we can arrive at:

z ' h(x̂a, x̂
(0)
b ) + Hax̃a + Hbx̃

(0)
b + n (5)

= h(x̂a, x̂
(0)
b ) + Hb∆xb + Hax̃a + Hbx̃b + n (6)

The cost function (2) can be approximated by:

C '
∥∥∥z− h(x̂a, x̂

(0)
b )−Hb∆xb −Hax̃a −Hbx̃b

∥∥∥2
R−1

(7)

By iteratively solving the linear system of (7), we can
get solutions to (3). But compared with standard MLE
algorithms, we have the following remarks:

1) Case 1: Since states xb can only be linearized with
fixed estimates (x̂(0)

b ), a correction term Hb∆xb appears in
the linearized cost function (7).

2) Case 2: If the Jacobians Hb|x̂a,x̂(0)
b

for xb only relates

to x̂
(0)
b , then we have Hb|x̂a,x̂(0)

b

= Hb|x̂(0)
b

. Hence, when
solving the (3) iteratively, Hb only needs to be computed
once and can be used repeatedly (since x̂

(0)
b is fixed).

3) Case 3: If the noise n is not additive, instead, it is
included in the nonlinear observation model:

z = h(xa,xb,n) (8)

Accordingly, the linearzied model and cost function can be
rewritten as:

z ' h(x̂a, x̂
(0)
b ,0) + Hb∆xb + Hax̃a + Hbx̃b + Hnn (9)

C '
∥∥∥z− h(x̂a, x̂

(0)
b ,0)−Hb∆xb −Hax̃a −Hbx̃b

∥∥∥2
R−1

0

(10)

where Hn = Hn|x̂a,x̂(0)
b

and R0 = HnRH>n . Similarly,

if the Hn only relates to x̂
(0)
b , Hn and R0 are also fixed,

which both will be used repeatedly for solving (3). In contrast
to iSAM, which relinearize the states after every few steps,
our approach relinearizes xa every step but keeps x̂

(0)
b fixed
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throughout. Compared to first-estimates Jacobians (FEJ [31])
which uses initial estimates to improve filter consistency, the
partial-fixed-estimate estimator iteratively solves MLE with
fixed linearization constraints for certain parameters.

Our formulation enables a unified approach for represent-
ing both IMU optimization costs and time offset optimization
cost. While formulating the IMU optimization cost, the bias
linearization is fixed and Case II-A.2 and II-A.3 is applied.
Similarly, while formulating the offset optimization cost, the
time offset is fixed and Case II-A.1 is applied.

III. ANALYTIC COMBINED IMU INTEGRATION (ACI2)
In this section, we will detail the IMU model and the

proposed modularized IMU integration.

A. IMU Model
The IMU state can be described as:

xI :=
[
x>n x>b

]>
(11)

where xn :=
[
G
I q̄
> Gp>I

Gv>I

]>
and xb :=

[
b>g b>a

]>
rep-

resent the IMU navigation state and the bias state, respec-
tively. Hamilton quaternion [32] G

I q̄ represents the rotation
G
I R from frame {I} to frame {G}, with error states δθ

defined as δq̄ =
[
1 δθ>

]>
= ˆ̄q−1 ⊗ q̄. GpI and GvI

represent the IMU position and velocity in the global frame,
respectively. bg and ba are gyroscope and accelerometer
biases. The IMU dynamic model can thus be defined as [24],
[33]:

G
I

˙̄q =
1

2
Ω(ω)GI q̄,

GṗI = GvI

Gv̇I = G
I RIa + Gg, ḃg = nwg, ḃa = nwa (12)

where ω and a denote the local angular velocity and linear
acceleration, nwg and nwa are the white Gaussian noises
driving the gyroscope and accelerometer biases. Ω(ω) =[

0 −ω>

ω −bωc

]
and b·c represents a skew symmetric matrix.

The IMU readings can be described as:

ωm = ω + bg + ng, am = a + ba + na − I
GRGg (13)

where Gg =
[
0 0 −g

]>
. ng and na are continuous-

time Gaussian noises that contaminate the IMU readings.
For simplicity, we also define the IMU noise vector nI(t) =[
n>g n>a n>wg n>wa

]>
, which means that the system

noises are modeled as zero-mean white Gaussian process
with autocorrelation E

[
nI(t)n>I (τ)

]
= Qcδ(t− τ).

B. Interval-based IMU Measurement
In senor fusion, IMU operates at a much higher rate

than complementary sensors such as cameras. In order to
avoid adding too many parameters into the optimization, we
would like to collect and pre-process the IMU measurements
between camera frame interval and add only the starting and
ending IMU states (i.e, IMU states at time step k and j, see
Fig. 2) into the state vector.

To simplify notation, we define the index of all the IMU
measurements between time step k and j as from 0 to i+ 1,

Fig. 2: Aligned camera and IMU time line.

j , k + i+ 1 and tk+i , ti. Hence, starting from frame k,
multiple (i+ 1) steps integration can be described as:

∆q̄i+1 = ∆q̄i ⊗ q̄(
∫ ti+1

ti

ωidτ)

∆pi+1 = ∆pi + ∆viδti + ∆Ri

∫ ti+1

ti

∫ ts

ti

Ik+i
Iτ

R · aidτds

∆vi+1 = ∆vi + ∆Ri

∫ ti+1

ti

Ik+i
Iτ

R · aidτ

∆bgi+1 = ∆bgi +
∫ ti+1

ti

nwgdτ, ∆bai+1 = ∆bai +
∫ ti+1

ti

nwadτ

where ∆q̄i, ∆vi, ∆pi, ∆bgi and ∆bai are the integrated
IMU state measurements from time step k to k+ i. ∆Ri ,
Ik
Ik+i

R is the corresponding rotation matrix for ∆q̄i. δti =
tk+i+1− tk+i. ωi and ai represents the angular velocity and
linear acceleration between k+i and k+i+1. For simplicity,
based on the assumption that the IMU reading are constant
in each small time interval (e.g., between k+i and k+i+1),
we introduce 4 integration components:

Ξ1 =

∫ ti+1

ti

Ik+i
Iτ

R̂dτ, Ξ2 =

∫ ti+1

ti

∫ ts

ti

Ik+i
Iτ

R̂dτds (14)

Ξ3 =

∫ ti+1

ti

Ik+i
Iτ

R̂bâicJr(ωiδτ)δτdτ (15)

Ξ4 =

∫ ti+1

ti

∫ ts

ti

Ik+i
Iτ

R̂bâicJr(ωiδτ)δτdτds (16)

where Jr(·) denotes the right Jacobians (see Appendix I).
These 4 components can be used repeatedly for the inte-
grated measurements, Jacobians and covariances. Hence, the
integrated measurements can be computed as:

∆q̄i+1 ' ∆q̄i ⊗ q̄(ω̂iδti) (17)

∆p̂i+1 ' ∆p̂i + ∆v̂iδti + ∆R̂iΞ2âi (18)

∆v̂i+1 ' ∆v̂i + ∆R̂iΞ1âi (19)

And their related bias Jacobians can be computed by using
these 4 components repeatedly as:

∂∆θi+1

∂b̃gk

' Ik+i
Ik+i+1

R̂>
∂∆θi

∂b̃gk

− Jr (ω̂iδti) δti (20)

∂∆p̃i+1

∂b̃gk

' ∂∆p̃i

∂b̃gk

+
∂∆ṽi

∂b̃gk

δti −∆R̂i(bΞ2âic
∂∆θi

∂b̃gk

−Ξ4) (21)

∂∆p̃i+1

∂b̃ak

' ∂∆p̃i

∂b̃ak

+
∂∆ṽi

∂b̃ak

δti −∆R̂iΞ2 (22)

∂∆ṽi+1

∂b̃gk

' ∂∆ṽi

∂b̃gk

−∆R̂ibΞ1âic
∂∆θi

∂b̃gk

+ ∆R̂iΞ3 (23)

∂∆ṽi+1

∂b̃ak

' ∂∆ṽi

∂b̃ak

−∆R̂iΞ1 (24)
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The derivation for other IMU state measurements and ana-
lytic Jacobians to ∆bgi and ∆bai can be found in technical
report [33]). Thus, we can construct the linearized measure-
ment system as:

z̃I,i+1 ' Φ(i+ 1, i)z̃I,i + GinIdi (25)

z̃I,i =
[
∆θ>i ∆p̃>i ∆ṽ>i ∆b̃>gi ∆b̃>ai

]>
(26)

where nIdi ∼ N (0,Qdi) is the discrete noise [24], [33] for
IMU noise nI at time step k+i and Gi is the corresponding
noise Jacobians. The state transition matrix Φ(i + 1, i) can
be written as:

Φ(i+ 1, i) =


Φ11 03 03 Φ14 03

Φ21 I3 I3δti Φ24 Φ25

Φ31 03 I3 Φ34 Φ35

03 03 03 I3 03

03 03 03 03 I3

 (27)

where we have:

Φ11 =
Ik+i
Ik+i+1

R̂>, Φ14 = −Jr (ω̂iδti) δti

Φ21 = −∆R̂ibΞ2âic, Φ24 = ∆R̂iΞ4, Φ25 = −∆R̂iΞ2

Φ31 = −∆R̂ibΞ1âic, Φ34 = ∆R̂iΞ3, Φ35 = −∆R̂iΞ1

Then, the propagated IMU measurement covariance Qi+1

can thus be computed iteratively as:

Qi+1 = Φ(i+ 1, i)QiΦ
>(i+ 1, i) + GiQdiG

>
i (28)

The detailed derivation for Gi can be found in technical
report [33]. For the proposed ACI2, we have the following
remarks:
• Compared to [5], we provide a modularized and elegant

way to integrate the IMU measurements. For each inte-
gration step, we need to analytically solve only once the
4 integration components Ξi, i ∈ 1 . . . 4. Once solved,
they are repeatedly used for state transition Φ(i+ 1, i)
and noise Jacobians Gi.

• Compared to [6] which only integrates the measure-
ments of navigation state (IMU orientation, position and
velocity), we integrate the full IMU state (combining
the IMU navigation and bias states). Therefore, Qi

will include the correlation between biases and the
navigation state (which are ignored in [6]). Thus ACI2

is a combined integration approach that accounts for all
correlations in navigation state.

IV. VISUAL INERTIAL NAVIGATION

In this section, we will formulate the VINS cost functions
including IMU measurements, visual measurements and time
offset calibration.

A. IMU Cost Function
The IMU measurement model can be defined as:

∆q̄i+1 , hq(xnk ,xnj ) = Ik
G q̄ ⊗

G
Ij q̄

∆pi+1 , hp(xnk ,xnj )

= G
Ik

R>
(

GpIj − GpIk − GvIk∆ti −
1

2
Gg∆t2i

)
∆vi+1 , hv(xnk ,xnj ) = G

Ik
R>

(
GvIj − GvIk − Gg∆ti

)
∆bgi+1 = bgj − bgk , ∆bai+1 = baj − bak

where ∆ti = tk+i − tk. In order to avoid the re-integration
of IMU measurements, we fix the IMU bias (x̂(0)

bk
[6]). Then,

following Eq.(7), the IMU measurements with fixed bias
states can be written as:

∆q̄i+1(x̂0
bk
,nI)

∆pi+1(x̂0
bk
,nI)

∆vi+1(x̂0
bk
,nI)

∆bgi+1
(nI)

∆bai+1
(nI)

︸ ︷︷ ︸
zIkj (x̂

0
bk

,nI)

'


hq(xnk ,xnj )⊗ q̄−1(Hq

bx̃bk)⊗ q̄−1(Hq
b∆xbk)

hp(xnk ,xnj )−Hp
b∆xbk −Hp

b x̃bk

hv(xnk ,xnj )−Hv
b∆xbk −Hv

b x̃bk

bgj − bgk

baj − bak

︸ ︷︷ ︸
h(xnk

,xnj
,xbk

,xbj
)

(29)

where zIkj is the integrated IMU measurements connecting
state xIk and state xIj . Hz

y represents the Jacobians of state
z to variable y. nI describes all the stacked IMU noises
between tk and tj . This formulation is similar to the II-A.2
and II-A.3, where xbk is the fixed states. Please refer to
our companion technical report [33] for detailed derivation
of Jacobians and covariance. Finally, the corresponding IMU
cost function can be written as:

CIkj ,
∥∥z̃Ikj∥∥2Q−1

kj

(30)

where Qkj is the integrated IMU measurement covariance
between k and j following (28).

B. Point Measurement Model
As the camera moves through an environment, visual point

feature measurements can be extracted and tracked between
images. These camera measurements are described by:

zf = Π(Cpf ) + nf , Π([x y z]>) =
[
x
z

y
z

]>
(31)

where nf ∼ (0,Rf ) and Cpf represents the 3D position
of the point feature expressed in the camera frame. In this
work, we treat the IMU clock as the true time and estimate
the offset of the aiding sensor relative to this base clock [26],
[34]. Similarly to [28], we model the time offset td as a time-
varying value:

ṫd = nt, td,k = tC,k − tI,k (32)

where nt ∼ N (0, σt). tC,k is the time recorded on the
camera measurements while tI,k is the corresponding true
IMU time. According to our time offset definition (32), the
feature Cpf in the sensor frame with reported time stamp
tC,k corresponds to the time tC,k − td,k in the IMU base
clock. Hence, we have:

Cpf = C
I RI

GR(tC,k − td,k)
(
Gpf − GpI(tC,k − td,k)

)
+ CpI (33)

where I
GR(tC,k − td,k) and GpI(tC,k − td,k) represent the

IMU pose at time tC,k− td,k, which will be denoted as time
step k for simplicity in the ensuing derivations.

C. Visual Inertial Navigation with Time offset Calibration
In order to avoid re-integration of IMU readings when

the time offset estimates change, we propose to fix the time
offset linearization point, which is similar to II-A.1. We have
the point feature measurement at time step k as:

zf,k = hC(xIk ,pf , td,k) + nf (34)

If we fix the linearization t(0)d,k, we get:

zf,k = hC(x̂Ik , p̂f , t̂
(0)
d,k) + Ht∆td,k + HIk x̃Ik + Hf p̃f + Htt̃d,k + nf
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where Hx is the Jacobian to state x and can be found in
our companion technical report [33]. Note that Ht∆td,k is
the time offset correction term due to the fixed time offset
linearization point. Therefore, the related cost for vision
model can be written as:

CCk , ‖z̃f,k‖2R−1
f

(35)

Taking into account the random walk of time-offset, we have:

Ctkj ,
∥∥z̃tkj∥∥2R−1

t
, ztkj = td,k − td,j +

∫ tj

tk

ntdτ (36)

where Rt = σ2
t (tj−tk) and ztkj is defined as the time offset

measurement between time step k and j. Finally, the overall
time-offset calibration cost function for the ACI2 based VINS
system is described as:

C =
∑
k,j

CIkj +
∑
k

CCk +
∑
k,j

Ctkj (37)

Where CIk,j , CCk and Ctkj are from (30), (35) and (36),
respectively. By minimizing (37), we can optimize IMU
states, landmarks and IMU-cam time offset.

V. EXPERIMENTAL VERIFICATION

A. IMU Integrator Comparison
In the VI-SLAM simulator [5], an MAV with an IMU and

stereo camera is simulated to follow a 3D trajectory shown
in Fig. 3. The camera was simulated to operate at 10Hz
while the IMU was simulated at four different rates from
100Hz to 800Hz. At each camera frame, 80 visual feature
measurements are generated. We implement the proposed
ACI2 using the fixed-lag smoother within GTSAM [23] and
integrated it into the simulator. For a fair comparison, we
ran over 30 Monte-Carlo iterations to compare the proposed
ACI2 against the state-of-art discrete pre-integration [6] and
CPI [5] side by side. Note that for complete comparison with
CPI, we implement two ACI2 models: MODEL 1 (based on
piece-wise constant acceleration measurement assumption)
and MODEL 2 (based on piece-wise constant true accelera-
tion assumption, reference to [5], [33] for detail comparisons
and implementations.)

Table I presents the root mean square error (RMSE) in
IMU poses from 30 Monte-Carlo runs for different IMU
integrators. We observe that both ACI2 and CPI have better
accuracy than Forster’s integrator [6]. It is also observed that
at lower frequency, ACI2 has better performance compared to
both CPI and Forster’s. Overall, ACI2 has improved accuracy
than CPI MODEL 1 and MODEL 2.

B. Time Offset Calibration
With Open VINS [18] simulator, we simulated two tra-

jectories (see Fig. 4) from real world datasets: UD Gore
Hall dataset [5] and TUM Room1 dataset [35]. In both
simulations, the IMU operated at 400Hz while the camera
operated at 10Hz. When the simulated visual-inertial sensor
rig was moving along the trajectories, 50 point feature
measurements are generated and one pixel white Gaussian
noise is added to each of the measurement. The true time
offset between IMU and camera is set to be zero.

When running our system, the IMU state is initialized with
ground truth and the initial time offset is perturbed by 0.01s.

10 Monte-Carlo runs are performed with these two simulated
datasets. The relative pose error (RPE) [36] was used to
evaluate the estimation accuracy for the proposed ACI2

(shown in Fig. 5). For comparison, we evaluated the proposed
system with and without time offset calibration. The pose
estimation results compared to online time offset calibration
are both shown in Fig. 5. The estimated trajectories and time
offset of a typical run for both datasets are shown in Fig. 4.
It can be seen that even (when) the system is perturbed with
0.01s, the time offset converges to the true value with the
proposed algorithm.

C. VI-SLAM Experiments
We also conducted a proof-of-concept experiment with

real world data collected by Intel RealSense T2651 observing
ArUco tags [37] to verify the proposed ACI2 estimator. The
collected data has a total trajectory length of approx. 66m and
has 24 tags in front of the sensor. Note that when collecting
the data, the trajectory started and ended at approximately the
same point. The estimated trajectory and tags are shown in
Fig. 6. We observe that in the resultant trajectory the starting
and ending points are close. Additionally, most of the tags
are in a planar surface similar to the experimental setup.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we use MLE with partial-fixed estimates to
formulate a unified derivation for analytic combined IMU
integrator (ACI2) and time-offset calibrator. This enables
us to incorporate linearization constraints on parameters in
MLE. In contrast to all previous approaches, our method
enables a modularized analytic combined IMU integrator
(ACI2), in which 4 integration components are shared be-
tween IMU integration, Jacobians and covariances. Next, we
have introduced a novel batch optimization based time offset
calibration between the IMU and camera, which has the
potential to be extended to multiple types of sensors. Finally,
we have performed intensive Monte-Carlo simulations to
verify that our ACI2 is comparable to the state-of-the-art
and validate the time offset calibration. A proof-of-concept
real world experiment is also conducted to validate the
proposed ACI2. Overall, we have presented computationally
efficient approaches for handling both re-integration and
online time offset calibration in VINS. This paves the way
for more efficient resource constrained implementation on
hardware. In the future, we will improve the system design
(feature tracking and outliers rejection) to verify the time
offset calibration with real world datasets and compare the
efficiency of these integrators. The proposed time offset
calibration will also be evaluated and compared to other
approaches [10], [26]. Additionally, graph sparsification and
marginalization [38] will be leveraged to improve the system
efficiency.

APPENDIX I
The right Jacobians of Hamilton quaterion (J(H)

r [33] for
q̄) and SO(3) (J(S)

r [6] for q̄J ), and the left Jacobians of JPL
quaternion (J(J)

l [24]) can be defined as:

q̄(φ+ δθ) = q̄(φ)⊗ q̄(J(H)
r δθ) (38)

1https://www.intelrealsense.com/tracking-camera-t265/
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Fig. 3: Simulated trajectory (about 290m) for visual-inertial SLAM (left). Average position RMSE for visual-inertial SLAM
with different IMU integrator at 100Hz over 30 Monte-Carlo simulation runs (right).

TABLE I: Comparisons of pose RMSE of ACI, CPI and Forster IMU integration algorithms with different IMU frequencies
over 30 Monte-Carlo runs.

Algorithm
100Hz 200Hz 400Hz 800Hz

Position Orientation Position Orientation Position Orientation Position Orientation
FORSTER 0.10693 0.33638 0.05723 0.21008 0.03478 0.11395 0.02887 0.08586

CPI-Model 1 0.09609 0.33562 0.04992 0.20712 0.03351 0.11276 0.02838 0.08525
ACI2-Model 1 0.09580 0.33503 0.04968 0.20741 0.03346 0.11286 0.02813 0.08526
CPI-Model 2 0.09282 0.30895 0.04749 0.18084 0.03286 0.10568 0.02838 0.08545

ACI2-Model 2 0.09244 0.30569 0.04732 0.17995 0.03284 0.10557 0.02838 0.08545

Fig. 4: A typical run for proposed system with online time offset calibration on UDel Gore Hall dataset (smooth trajectory
about 249m with 2437 map points, shown in left) and TUM Room1 dataset (dynamic trajectory about 207m with 898 map
points, middle). The absolute errors of the time offset estimates for these two datasets are shown in right. The time offset
errors starts from 0.01s and converge to near 0.0 finally.

Fig. 5: Boxplot of the relative trajectory error statistics
for proposed ACI with and without online calibration over
10 Monte-Carlo runs. Note that ACI denotes the system
without online calibration but initialized with true time offset.
ACI Calib denotes the online calibration system with initial
time offset as 0.01s while the true time offset is 0s.

q̄J(φ+ δθ) = q̄J(J
(J)
l δθ)⊗ q̄J(φ) (39)

exp(φ+ δθ) = exp(φ)exp(J(S)
r δθ) (40)

Fig. 6: ACI2 based VI-SLAM with ArUco tags. The blue line
is estimated trajectory (around 66m) for the IMU and the red
circles are estimated tags. The green triangular and the red
filled circle are the starting and ending points, respectively.

Proposition 1: The right Jacobians of Hamilton quater-
nion and SO(3), and the left Jacobians of JPL quaterion are
equivalent: J

(H)
r = J

(S)
r = J

(J)
l with φ = ‖φ‖, k = φ/φ

and J(H)
r (φ) = I3 −

1− cosφ

φ
bkc+

φ− sinφ

φ
bkc2.

Proof: See our companion technical report [33].
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