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Abstract— This paper presents a tightly-coupled aided iner-
tial navigation system (INS) with point and plane features, a
general sensor fusion framework applicable to any visual and
depth sensor (e.g., RGBD, LiDAR) configuration, in which the
camera is used for point feature tracking and depth sensor
for plane extraction. The proposed system exploits geometrical
structures (planes) of the environments and adopts the closest
point (CP) for plane parameterization. Moreover, we distinguish
planar point features from non-planar point features in order to
enforce point-on-plane constraints which are used in our state
estimator, thus further exploiting structural information from
the environment. We also introduce a simple but effective plane
feature initialization algorithm for feature-based simultaneous
localization and mapping (SLAM). In addition, we perform
online spatial calibration between the IMU and the depth sensor
as it is difficult to obtain this critical calibration parameter in
high precision. Both Monte-Carlo simulations and real-world
experiments are performed to validate the proposed approach.

I. INTRODUCTION AND RELATED WORK

Most of current popular approaches for real time 6DOF
sensor position and orientation (pose) estimation rely on
inertial measurement units (IMUs), which can provide high
frequency but noisy angular velocity and linear acceleration
measurements. In particular, direct integration of these noisy
inertial readings from a MEMS IMU will result in large
estimation drifts even within a short time interval. For this
reason, additional measurement information from different
sensor modalities (e.g., optical or event cameras [1]–[7],
imaging sonars [8], [9] and LiDAR [10]) will be fused to
improve the estimation consistency and accuracy.

To date, most of aided inertial navigation systems (INS)
have been focusing on utilizing point feature measurements
for pose estimation or loop closure. Indeed, point features
can be easily detected and reliably tracked in both structured
and structure-less environments. Moreover, as shown in [11],
[12], point features can provide enough geometrical con-
straints for the pose estimation of aided INS except for global
sensor position and yaw. However, with only point features,
it is difficult for the estimator to leverage the structural
constraints from environments (e.g., the Manhattan world
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and indoor rooms) for improved performance. Therefore,
features (e.g., lines and planes) that contain such structural
information should be exploited, which have attracted quite
a few research efforts.

In particular, Hesch et al. [13] used a 2D LiDAR to aid INS
for indoor localization by estimating orthogonal structural
planes of the buildings within an EKF framework. In our
recent work [10], however, we proposed a 3D LiDAR aided
inertial plane SLAM system (LIPS) within a graph opti-
mization framework by using continuous-time IMU prein-
tegration [14]. The closest point (CP) from the plane to the
origin was used for plane parameterization, which was shown
to have better performance compared to quaternion plane
representation [15]. Unlike LIPS that used only 3D plane
features extracted from sparse LiDAR point clouds, Guo et
al. [16] employed both point and plane features in the RGBD
aided INS, which assumed known global orientations of the
planes and modeled the point observations as a direct relative
position measurements. Based on these plane and point
measurement models, they performed observability analysis
and showed that their system still has four unobservable
directions as expected in vision-aided INS (VINS). Hsiao
et al. [17] recently developed a dense planar inertial SLAM
system (DPI-SLAM) with RGBD cameras, within a loosely-
coupled graph optimization using the inertial preintegration,
dense visual-odometry and planar measurements (in quater-
nion form) as the error constraints, which is solved by using
the iSAM2 [18]. Note that particular geometric planes such
as vertical planes are also assumed in [17].

Unlike the aforementioned work, in this paper, we propose
a tightly-coupled estimation framework for aided INS with
point and plane features, which fuses measurements from a
camera and a generic depth sensor (e.g., RGBD camera or
LiDAR). In particular, the camera can be used for acquiring
feature tracks through image sequences, while the plane
features, which contain more structural information, can be
extracted from point cloud generated from the depth sensor.
It is important to note that we divide the detected point
features into two types: (i) multi-state constraint Kalman
filter (MSCKF) [4] feature, and (ii) SLAM point feature,
in analogy to [19], [20]. To limit the state vector size, most
of the point features will be treated as MSCKF features and
linearly marginalized via null space operation [4], [21], while
only a few point features that are residing on planes will
be kept in state vector as SLAM features. This follows our
design idea that, in order to exploit the structural information
available in the environment, whenever possible, we want
to enforce the point-on-plane constraints to further improve
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estimation. Moreover, in comparison to extrinsic calibration
between the camera and the IMU (for which many algorithms
or tools are available), it is not easy to obtain via offline
calibration the accurate rigid-body transformation of the IMU
and depth sensor, and thus we particularly perform online
extrinsic calibration between them. In summary, the main
contributions of this work include:

• We develop a tightly-coupled estimator for aided INS
with both point and plane features, applicable to a vision
sensor along with a generic depth sensor. The camera
can be used for point feature tracking while the depth
sensor is utilized for plane extraction. In addition, the
rigid-body transformation between the IMU and depth
sensor is included in the state vector for online spatial
extrinsic calibration.

• To exploit the structural information of the environment,
whenever possible, we detect planar point features that
are kept in the state vector, and then enforce point-on-
plane constraints in estimation. In addition, we intro-
duce a simple but effective plane feature initialization
method for state estimation.

• Both Monte-Carlo simulations and real-world experi-
ments with a RGBD camera and IMU are performed
to validate the proposed approach, where in real tests
a new noise model is introduced to better capture the
uncertainty of RGBD points.

II. AIDED INS WITH POINT AND PLANE FEATURES

The state vector of the proposed aided INS contains the
IMU state xI , the depth sensor calibration xcalib and the
feature state xfeat. For simplicity, we consider one point
feature and one plane feature in the state vector as:

x =
[
x�
I x�

calib x�
feat

]
(1)

where we have defined:

xI =
[
I
Gq̄

� b�
g

Gv�
I b�

a
Gp�

I

]�
(2)

xcalib =
[
D
I q̄� Dp�

I

]�
(3)

xfeat =
[
Gp�

f
Gp�

π

]�
(4)

where I
Gq̄ denotes the JPL quaternion [22] relating to the

rotation I
GR from global frame {G} to IMU frame {I},

GvI and GpI denote the IMU velocity and position in
global frame, bg and ba represents the random walk biases
for gyroscope and accelerometer, respectively. D

I q̄ and DpI

represents the rigid-body orientation and translation between
the depth frame {D} and the IMU frame {I}. In addition,
Gpf and Gpπ denote the point and plane feature. Note that
in this work we adopt the closest point (CP) representation
for planes as advocated in our prior work [10], [23].

A. IMU Motion Model
With IMU measurements, the system motion model can

be described as [22]:

I
G
˙̄q(t) =

1

2
Ω

(
Iω(t)

)
I
Gq̄(t)

GṗI(t) =
GvI(t),

Gv̇I(t) =
Ga(t)

ḃg(t) = nwg, ḃa(t) = nwa(t)

ẋcalib(t) = 06×1, ẋfeat(t) = 06×1 (5)

where ω and a represent angular velocity and linear accel-
eration, respectively. With denoting �·� as skew symmetric

matrix, we have Ω(ω) =

[−�ω� ω
−ω� 0

]
. The biases bg and

ba are driven by the white Gaussian noises nwg and nwa,
respectively. In addition, given the true state x and the
estimated state x̂, the error state is defined as x̃ = x − x̂.
Note that the quaternion takes on a different error state δθ
as:

δq̄ = q̄ ⊗ ˆ̄q−1 �
[
1
2δθ

� 1
]�

(6)

where ⊗ represents the multiplication for JPL quater-
nions [22]. Therefore, the linearized system model (5) can
be written as:

˙̃x(t) = Fc(t)x̃(t) +Gc(t)n(t) (7)

where Fc(t) and Gc(t) represents the continuous-time er-
ror state Jacobians and noise Jacobians, while ng and
na are white Gaussian noises contaminating the IMU an-
gular velocity and linear acceleration readings. n(t) =[
n�
g n�

wg n�
a n�

wa

]�
represents the system noises mod-

eled as a zero-mean white Gaussian process with autocorre-
lation E

[
n(t)n�(t)

]
= Qcδ(t− τ).

To propagate the covariance Pk|k at time step k, the state
transition matrix Φ(k+1,k) from time tk to tk+1 can be com-
puted by solving Φ̇(k+1,k) = Fc(tk)Φ(k+1,k) with identity
initial condition. Thus, the discrete-time noise covariance and
the propagated covariance can be written as:

Qk =

∫ tk+1

tk

Φ(k,τ)Gc(τ)QcG
�
c (τ)Φ

�
(k,τ)dτ (8)

Pk+1|k = Φ(k+1,k)Pk|kΦ�
(k+1,k) +Qk (9)

B. Point Feature Measurements
The perspective projection which maps a point feature Gpf

onto the camera’s image plane is given by:

z(p) =
[

Cx
Cz

Cy
Cz

]�
+ n(p) (10)

Cpf =
C
I R

I
GR

(
Gpf − GpI

)
+ CpI (11)

where Cpf = [Cx,Cy,Cz]� denotes the point in camera
frame {C}. C

I R and CpI represents the known extrinsic cal-
ibration between the camera and IMU. Hence, the Jacobians
of the point measurement z(p) with respect to the state vector
(1) can be computed as follows:

HC =
∂z̃(p)

∂C p̃f

[
∂C p̃f

∂x̃I

∂C p̃f

∂x̃calib

∂C p̃f

∂x̃feat

]
(12)
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where we have:

∂z̃(p)

∂C p̃f
=

1
C ẑ2

[
C ẑ 0 C x̂
0 C ẑ C ŷ

]
(13)

∂C p̃f

∂x̃I
=

[
C
I R̂�IGR̂(Gp̂f − Gp̂I)� 03×9 −C

I R̂
I
GR̂

]
(14)

∂C p̃f

∂x̃calib
= 03×6,

∂C p̃f

∂x̃feat
=

[
C
I R̂

I
GR̂ 03

]
(15)

C. Plane Feature Measurements

For a plane pπ , given the normal direction nπ and the
distance dπ from the plane to origin, pπ can be represented
by the closest point [10], [23] from the plane to origin as:

pπ = dπnπ (16)

Since plane features can be directly extracted from the
point clouds acquired by the depth sensor (e.g., RGBD and
LiDAR), we assume a direct plane measurement:

z(π) = Dpπ + n(π) (17)[
Dnπ
Ddπ

]
=

[
D
I R 03×1

Dp�
I
D
I R 1

] [
I
GR 03×1

−Gp�
I 1

] [Gnπ
Gdπ

]
(18)

where n(π) is the plane measurement noise with covariance
Rπ . Note that it is not trivial to model this measurement
noise n(π) inferred from point-cloud measurements which
we will explain in detail next.

1) Plane Extraction from Point Clouds: Given a point
cloud, Dpf i, i = 1 . . .m corresponding to a plane, we define
each point measurements as:

Dpfmi =
Dpf i + nf i, nf i ∼ N (03×1,Rf i) (19)

where Dpf i is the true value of point i’s position in the
depth sensor’s frame. Note that Rf i is the point measurement
covariance which is crucial for modeling the uncertainty of
the plane feature. We will explain our choice for Rf i based
on the chosen sensor in our experiments [see (50)]. We can
define the distance from the point Dpf i to plane Dpπ as:

di =
Dp�

π
Dpfmi∥∥Dpπ

∥∥ −
∥∥∥Dpπ

∥∥∥ (20)

where Dpπ(=
Ddπ

Dnπ) is in CP form. As in our prior
work [10], we can formulate a maximum likelihood estima-
tion (MLE) to extract the plane Dpπ as:

argmin
Dpπ

m∑
i=1

‖di‖2R−1
di

(21)

The linearizion of (20) and the covariance Rdi can be written
as:

d̃i � Hri
Dp̃π +Hninf i (22)

Hdi =
∂d̃i

∂Dp̃π
=

1
Dd̂π

Dp̂�
f i

(
I3 − Dn̂π

Dn̂�
π

)
− Dn̂�

π (23)

Hni =
∂d̃i
∂nf i

= Dn�
π , Rdi = HniRf iH

�
ni (24)

With these Jacobians and residuals, we can solve (21) by
Levenberg-Marquardt algorithm and obtain the plane esti-
mate Dp̂π and its covariance by:

Rπ =

⎛
⎝ m∑

i=1

H�
di

(
HniRf iH

�
ni

)−1

Hdi

⎞
⎠−1

(25)

2) Plane Measurement Jacobians: In order to perform
the plane measurement update, we also need to compute the
plane measurement Jacobians with respect to the state vector
(including extrinsic calibration between the depth sensor and
IMU):

Hπ =
∂z̃(π)

∂x̃
=

[
∂z̃(π)

∂x̃I

∂z̃(π)

∂x̃calib

∂z̃(π)

∂x̃feat

]
(26)

where based on the chain rule of differentiation, we have:

∂z̃(π)

∂x̃I
=

∂z̃(π)

∂
[
Dñπ
Dd̃π

]
∂
[
Dñπ
Dd̃π

]

∂
[
I ñπ
I d̃π

]
∂
[
I ñπ
I d̃π

]

∂x̃I
(27)

∂z̃(π)

∂x̃calib
=

∂z̃(π)

∂
[
Dñπ
Dd̃π

]
∂
[
Dñπ
Dd̃π

]

∂x̃calib
(28)

∂z̃(π)

∂Gx̃feat
=

[
∂z̃(π)

∂Gp̃f

∂z̃(π)

∂Gp̃π

]
=

[
03

∂z̃(π)

∂Gp̃π

]
(29)

∂z̃(π)

∂Gp̃π
=

∂z̃(π)

∂
[
Dñπ
Dd̃π

]
∂
[
Dñπ
Dd̃π

]

∂
[
Gñπ
Gd̃π

]
∂
[
Gñπ
Gd̃π

]

∂Gp̃π
(30)

The detailed derivations can be found in Appendix I.
3) Data Association for Plane Features: When a new

plane measurement comes in, we employ the Mahalanobis
distance test to decide whether it corresponds to a new plane
or a currently estimated one. Given the current covariance
Pk|k, the Mahalanobis distance for the new plane measure-
ment is computed as:

rm =
(
z̃(π)

)� (
HπPk|kH�

π +Rπ

)−1

z̃(π) (31)

where rm subjects to χ2 distribution. If rm is smaller than
a lower threshold λmin, this plane will be considered as an
existing plane in the state vector. If it is larger than a higher
threshold λmax, this plane will be treated as a new plane
and initialized in the state vector.

After computing measurement Jacboians and residuals,
the standard EKF update [24] can be used to update state
estimate and covariance.

III. PLANE FEATURE INITIALIZATION

Inspired by [11], [25], we propose a simple but effective
plane feature initialization algorithm within the EKF frame-
work. Given the current state xk and its covariance Pk|k,
a new plane Gpπ is observed and needs to be added into
the state. The plane measurement and its linearizion can be
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re-written as:

z(π) = h

([
xk

Gpπ

])
+ n(π) (32)

z̃(π) � Hxx̃k +Hf
Gp̃π + n(π) (33)

where Hx and Hf represents the Jacobians w.r.t. the current
state xk and the new plane feature. Before initialization, the
covariance for the new plane feature is treated as ∞ and has
no correlation with existing state. Thus, the augmented prior
covariance for xk and Gpπ can be written as:

Pk+1|k =

[
Pk|k 0
0 ∞

]
(34)

The initialization problem can be reformulated as maximum
likelihood estimation (MLE):

min
xk,Gpπ

∥∥∥∥∥∥z(π) − h

([
x

Gpπ

])∥∥∥∥∥∥
2

R−1
π

+

∥∥∥∥∥
[

x̃
Gp̃π

]∥∥∥∥∥
2

P−1
k+1|k

(35)

By taking first order derivative and setting it zero, the optimal
state correction can be solved as:

Λ

[
x̃

Gp̃π

]
=

[
H�

x

H�
f

]
R−1

π z̃(π) (36)

where Λ denotes the information matrix of the new state
(including the plane) and is computed by:

Λ =

[
H�

x R
−1
π Hx +P−1

k|k H�
x R

−1
π Hf

H�
f R

−1
π Hx H�

f R
−1
π Hf

]
(37)

Therefore, the covariance Pk+1|k+1 of the new state can be
written as:

Pk+1|k+1 = Λ−1 =

[
Pxx Pxπ

P�
xπ Pππ

]
(38)

where Pxx and Pππ denote the covariances of current state
and plane Gpπ , respectively. Pxπ denotes the correlation
between the current state and the plane. Since we get the
plane measurements from the point cloud, Hf is square and
invertible. Hence, we can continue to simplify the above
equation based on the block matrix inversion:

Pππ = H−1
f

(
R+HxPk|kH�

x

)
H−�

f (39)

Pxπ = −Pk|kH�
x H

−�
f , Pxx = Pk|k (40)

Hence, the covariance matrix can be finally written as:

Pk+1|k+1 =

⎡
⎣ Pk|k −Pk|kH�

x H
−1
f

−H−�
f HxPk|k H−1

f

(
Rπ +HxPk|kH�

x

)
H−�

f

⎤
⎦

(41)
And the updated state correction can be written as:[

x̃
Gp̃π

]
=

(
Pk+1|k+1

)−1
[
H�

x

H�
f

]
R−1

π z̃(π) =

[
0

H−1
f z̃(π)

]
(42)

It is important to note that as compared to [11], for the
new plane feature initialization, we only need to compute the
inverse of the plane feature Jacobian,a 3 × 3 matrix. If Hf

is invertible, from both (41) and (42), the initialization will
not update the existing state. Instead, only the plane feature
covariance and correlation with existing state are created
during the feature initialization.

IV. POINT-ON-PLANE CONSTRAINTS

For those point features in the state vector, we wish
to exploit the structure of the environment by enforcing
a point-on-plane constraint whenever possible. Specifically,
assuming a point pf is on the plane pπ , we have the
following point-on-plane constraint:

g(x) :=
p�
f pπ

‖pπ‖ −‖pπ‖ = 0 (43)

Instead of hard constraints, we treat it as a probabilistic
compensation for the feature uncertainty of the planar model.
The cost term used by the estimator is given by:

min
x

∥∥g(x)∥∥2

σ−2
g

(44)

where σg is the variance we assign to the point-on-plane
constraints, which is set to be 0.01m in our experiments.

We identify the correspondence between point feature Gpf

and the new coming plane based on Mahalanobis distance
test (44). For clarity, we denote Dpπm � z(π) as the new
plane measurement. Then the distance from the pf to this
new plane pπ can be defined in the depth frame as:

dm =
Dp�

πm
Dpf∥∥Dpπm

∥∥ −
∥∥∥Dpπm

∥∥∥ (45)

Dpf =
D
I RI

GR
(
Gpf − GpI

)
+ DpI (46)

With that, we compute the Mahalanobis distance as:

rp = d�m
(
HmxPk|kH�

mx +HmnRπH
�
mn

)−1

dm (47)

where Hmx and Hmn are Jacobans w.r.t. the state and the
plane noise nπ , respectively. The detail derivation can be
found Appendix II. Also, based on χ2 distribution, we can
set a threshold. If rp is smaller than the threshold, we will
accept this point-on-plane constraint. Then, similar to [26],
this constraint (43) can be treated as additional measurement
and be used to update the state estimate and covariance.

V. SIMULATION RESULTS

We first validate the proposed tightly-coupled INS with
point and plane features in Monte-Carlo simulations. Similar
to our previous work [12], we simulate a 3D sinusoidal
trajectory that an IMU-stereo camera sensor rig travels
along. The sensor rig collects IMU readings, projective point
measurements as well as direct CP plane measurements from
a pre-generated map. We run Monte-Carlo simulations with
the proposed estimator for the following scenarios: (i) using
point features only, (ii) using plane features only, and (iii)
using both features. The average normalized estimation error
square (NEES) and root mean square error (RMSE) [27]
are used to evaluate the accuracy and consistency of IMU
pose estimation, which are shown in Fig. 1. These results
clearly demonstrate that the system performs better when
both point and plane features are used, compared to other
two cases when only one type of feature is used. Note that
in this simulation, the online calibration and point-on-plane
constraints are not applied, while they will be validated in
the real-world experiments presented next.
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Fig. 1: Simulation results: Averaged NEES and RMSE values
of the IMU poses (orientation and position) of the proposed
aided INS with point and/or plane features.

Fig. 2: Proof-of-concept indoor experiment setup for the
proposed aided INS with point and plane features. ArUco
makers [31] are placed in the workspace to serve as planar
point features and thus to create point-on-plane constraints.

VI. EXPERIMENTAL RESULTS

To further validate the proposed system, we perform proof-
of-concept experiments using a RGBD camera (Intel Re-
alsense ZR3001) which can provide IMU readings, monocu-
lar images and dense point clouds. Note that we did not use
the depth correspondence between the optical image pixel
and the depth image. Instead, we treat the images and point
clouds as separate independent measurements. FAST [28]
features from the monocular image were extracted and then
tracked with optical flow [29]. Plane features were extracted
through segmentation of the acquired point clouds [30]. Then
these point and plane features were fed into our estimator.
During the tests, the ZR300 sensor traveled through an indoor
environment (see Fig. 2 and 3).

Since the point cloud of ZR300 is generated by com-
pounding the measurements from infrared cameras and color
cameras, it is not trivial to model the point cloud noise
covariance Rf i in (19). A point Dpf i =

[
Dxi

Dyi
Dzi

]�
from the point cloud is generated by fusing the bearing
information (ui =

Dxi
Dzi

, vi =
Dyi
Dzi

) from the color camera and
depth information Dzi from the infrared cameras. Hence, we

1https://software.intel.com/en-us/realsense/zr300

TABLE I: Experiment results for 3 trajectories. The values
in table represent the distances from the ending point to the
starting point of estimated trajectories.

Unit (m) Trajectory 1 Trajectory 2 Trajectory 3

MSCKF+Plane 0.2682 0.2607 0.8432

MSCKF+Pt+Plane 0.0539 0.1113 0.3608

MSCKF+Pt-On-Plane 0.0461 0.1095 0.3363

can have:

Dpfmi = (Dzi + nz)

⎡
⎣ui + nu

vi + nv

1

⎤
⎦ (48)

�
⎡
⎣Dx̂i

Dŷi
D ẑi

⎤
⎦ +

⎡
⎣D ẑi 0 ûi

0 D ẑi v̂i
0 0 1

⎤
⎦

︸ ︷︷ ︸
Hfni

⎡
⎣nu

nv

nz

⎤
⎦ (49)

where nu, nv ∼ N (0, σ2
pixel) represent normalized image

pixel noise with variance σ2
pixel, nz ∼ N (0, σ2

zi) represents
the depth measurement noise with σzi = αDzi. Note that in
our experiments, we take α = 0.04 since the point cloud
from ZR300 is too noisy. Hence, the point measurement
covariance for RGBD sensor can be modeled as:

Rf i = Hfni

⎡
⎢⎣σ

2
pixel 0 0
0 σ2

pixel 0
0 0 σ2

zi

⎤
⎥⎦H�

fni (50)

In our experiments, we implemented two types of point fea-
tures: 1) the MSCKF features which were marginalized and,
thus only pose information from these feature measurements
was fused into the estimator; 2) SLAM point features which
were extracted from the fiducial tags (see Fig. 2) and kept
in the state vector.

We denote the starting and ending points of the trajectory
as Gps and Gpe, respectively. Then, the distance dse between
the two points can be computed as:

dse =
∥∥∥Gps − Gpe

∥∥∥
2

(51)

Since we ran 3 different trajectories and for each trajectory,
the sensor returned to approximately the same position.
Therefore, dse is used to evaluate the accuracy of the
proposed algorithm. For each trajectory, we ran the proposed
algorithm with 3 different setups2: i) with SLAM plane
features only; ii) with both SLAM point and plane features;
iii) with both SLAM point and plane features and point-
on-plane constraints. We ran 10 times for each setup and
computed the average dse, which are shown in Table I. The
introduction of SLAM point features greatly improved the
performance than the case with the SLAM plane features
only. In addition, adding the point-on-plane geometrical
constraints further improved the system estimation accuracy.

2All these setups use MSCKF point features.
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Fig. 3: Estimated trajectories of three real-world experiments. From left to right is: Trajectory 1 (37m), Trajectory 2 (20m),
and Trajectory 3 (28.5m). The green square and red diamond represent the starting and ending point, respectively. Note that
the trajectory length is estimated by accumulating the position changes between every two consecutive frames.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a tightly-coupled EKF
based aided INS with point and plane features in order
to better exploit the available geometrical information in
structured environments. In the proposed system, a camera is
used for point feature tracking and a depth sensor for plane
feature extraction, while online spatial calibration between
the IMU and the depth sensor is also performed. In particular,
we detect point features which reside on the plane features
and enforce point-on-plane constraints in the EKF update
in order to further exploit the structure information of the
environment. In addition, a plane SLAM feature initialization
scheme is proposed and compared to existing work, and
we analytically show that given full plane measurement
from point cloud, the plane initialization will not update the
existing states. Both Monte-Carlo simulations and real-world
experiments with a RGBD camera were performed to verify
our algorithm. In the experiments, we also introduced a point
noise model which can better capture the uncertainty of the
RGBD points. In the future we will integrate online temporal
(time offset) calibration between IMU and the depth sensor.
Moreover, we will develop more robust algorithms for plane
feature data association without relying on the VIO.

APPENDIX I
PLANE MEASUREMENT JACOBIANS

The plane measurement Jacobians can be computed as:

∂z̃(π)

∂x̃I
=

[
Dd̂I3

Dn̂π

] [ D
I R̂�IGR̂Gn̂π� 03×9 03

−I p̂�
D�IGR̂Gn̂π� 01×9 −Gn̂�

π

]

∂z̃(π)

∂x̃calib
=

[
Dd̂I3

Dn̂π

] [ �DI R̂I n̂π� 03

−I n̂�
π
D
I R̂��Dp̂I� Dn̂�

π
D
I R̂�

]

∂z̃(π)

∂Gp̃π
=

∂z̃(π)

∂
[
Dñπ
Dd̃π

]
[

D
GR̂ 03×1

−Gp̂�
D 1

][
1

Gd̂π

(
I3 − Gn̂π

Gn̂�
π

)
Gn̂�

π

]

APPENDIX II
JACOBIANS FOR POINT-ON-PLANE CONSTRAINTS

We have two cases for the point-on-plane constraints: (i)
Dpπ is a new plane and will be initialized, and (ii) Dpπ

corresponds to a plane feature already in the state. Due
to limited space, detailed derivation can be found in our
technical report [32].

A. Case I

When the plane is first time observed, the Jacobians of the
dm w.r.t. the state vector can be written as:

Hmx =
∂d̃m
∂x̃

=
[
∂d̃m

∂x̃I

∂d̃m

∂x̃calib

∂d̃m

∂x̃feat

]
(52)

Where we have:

∂d̃m
∂x̃I

=
∂d̃m
∂Dp̃f

∂Dp̃f

∂x̃I
,

∂d̃m
∂x̃calib

=
∂d̃m
∂Dp̃f

∂Dp̃f

∂x̃calib
(53)

∂d̃m
∂x̃calib

=
∂d̃m
∂Dp̃f

∂Dp̃f

∂x̃feat
=

[
Dn̂�

π
D
I R̂I

GR̂ 01×3

]
(54)

The Jacobians for the noise can be described as:

Hmn =
∂d̃m
∂n(π)

=
1

Dd̂π

Dp̂�
f

(
I3 − Dn̂π

Dn̂�
π

)
− Dn̂�

π (55)

B. Case II

If plane Gpπ is already in the state vector, we still have
(55). The components of (52) need to be computed as:

∂d̃m
∂δθI

=
∂d̃m
∂Dp̃f

∂Dp̃f

∂δθI
+

∂d̃m
∂Dp̃π

∂Dp̃π

∂δθI
(56)

∂d̃m
∂Gp̃I

=
∂d̃m
∂Dp̃f

∂Dp̃f

∂Gp̃I
+

∂d̃m
∂Dp̃π

∂Dp̃π

∂Gp̃I
(57)

∂d̃m
∂δθD

=
∂d̃m
∂Dp̃f

∂Dp̃f

∂δθD
+

∂d̃m
∂Dp̃π

∂Dp̃π

∂δθD
(58)

∂d̃m
∂Dp̃I

=
∂d̃m
∂Dp̃f

∂Dp̃f

∂Dp̃I
+

∂d̃m
∂Dp̃π

∂Dp̃π

∂Dp̃I
(59)

∂d̃m
∂Gp̃f

=
∂d̃m
∂Dp̃f

∂Dp̃f

∂Gp̃f
= Dn̂�

π
D
I R̂I

GR̂ (60)

∂d̃m
∂Gp̃π

=
∂d̃m
∂Dp̃π

∂Dp̃π

∂Gp̃π
(61)
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