
Acoustic-Inertial Underwater Navigation

Yulin Yang and Guoquan Huang

Abstract— In this paper, we introduce a novel acoustic-
inertial navigation system (AINS) for Autonomous Underwater
Vehicles (AUVs). We are aiming to reduce the cost and latency
of current underwater navigation systems that typically employ
high-accuracy and thus high-cost inertial sensors. In particular,
the proposed approach efficiently fuses the acoustic observa-
tions from a 2D imaging sonar and the inertial measurements
from a MEMS inertial measurement unit (IMU) within a
tightly-coupled EKF framework, while having no need to keep
the acoustic features in the state vector. As a result, the
computational complexity of the proposed AINS is independent
from the scale of the operating environment. Moreover, we
develop an acoustic feature linear triangulation to provide
accurate initial estimates for iterative solvers, and perform
an in-depth observability analysis to investigate the effects of
sensor motion on the triangulation. Additionally, since it is
challenging to perform a priori sensor extrinsic calibration
underwater, we advocate to calibrate IMU-sonar online. The
proposed AINS has been validated extensively in Monte-Carlo
simulations.

I. INTRODUCTION

Over the years, there has been increasingly growing de-
mands of Autonomous Underwater Vehicle (AUVs) for a
wide range of applications, such as seabed mapping, deep
ocean exploring, routine harbor monitoring and oil pipeline
maintenance. To successfully accomplish these tasks, an effi-
cient and accurate localization solution is required for AUVs.
However, this is challenging for underwater navigation, in
part because GPS signal cannot be received underwater,
and acoustic beacons require tedious and costly installation
before applications. Although high accuracy inertial sensors,
such as Doppler Velocity Loggers (DVLs) and fiber optic
gyroscopes (FOGs), may provide good localization, the high
cost limits their widespread deployments.

Due to the water turbidity and weak illumination in
underwater environments, optical cameras only have limited
applications and the relatively less expensive two dimen-
sional (2D) forward-looking sonar (FLS) is preferable, which
has larger field of view (FOV) and faster operating frequency
[1][2], and is often used for short-range underwater detection
and imaging [3]. For this reason, substantial research efforts
have been taken on sonar-based underwater navigation. Wal-
ter et al. [4] used Exactly Sparse Extended Information Filter
(ESEIF) with manually extracted sonar features to estimated
the trajectory of AUV. Johannsson et al. [5] and Hover et
al. [6] both adopted incremental smoothing and mapping
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(iSAM [7]) to estimate the vehicle motion and produce
the environment maps for harbor surveillance and ship hull
inspection. In their work automatic feature extraction and
Normal Distribution Transformation (NDT) based image
registration were introduced. This is different from Hurtos et
al. [8], who registered images with Fourier-based methods.
Aykin et al. [9] improved [5] by using Gaussian Distribution
Transform for image registration instead of NDT. Based on
that, Negahdaripour [10] integrated visual cues from acoustic
shadows of stationary objects and devised 3D sonar motion
estimation solution. Mallios et al. [11] utilized two extended
Kalman filters (EKFs) together with a mechanical scanning
imaging sonar (MSIS) to solve the full simultaneous local-
ization and mapping (SLAM) problem. Assalih [12] tried
a similar idea of stereo vision. Instead of optical cameras,
the author imaged with two sonars and estimated the sonar
motion by matching corresponding acoustic features between
image pairs. Similarly, Negahdaripour et al. [13] proposed
an opti-acoustic stereo system, which combined both a
DIDSON sonar and an optical camera. But this system is not
applicable when there exists strong water turbidity. Based on
bundle adjustment (BA) [14], Huang et al. [15] introduced
acoustic structure from motion (ASFM), which uses multiple
sonar viewpoints to reconstruct 3D structure as well as the
motion of sonar.

In contrast to the aforementioned work, in this paper,
rather than solely relying on acoustic/optical images, we
propose to employ an acoustic sonar and IMU to develop
a low-cost acoustic-inertial navigation system (AINS). The
proposed AINS can efficiently fuse acoustic measurements
from a 2D imaging sonar and inertial measurements from
a MEMS IMU within a tightly-coupled EKF framework. In
particular, the main theoretical contributions of this work are
as follows:

• We develop a novel acoustic-inertial odometry algo-
rithm to fuse acoustic and inertial information without
keeping the sonar features in the state vector. Thus, the
computational complexity of the proposed approach is
independent of the number of features observed.

• We propose an acoustic feature triangulation method
to provide accurate initial estimates for the iterative
algorithms for solving the corresponding least-squares
problem. Moreover, an in-depth observability analysis
is conducted to examine the effects of sensor motion
on acoustic feature triangulation.

• We perform online extrinsic calibration between the
sonar and the IMU, because it is often challenging
in practice to pre-calibrate these sensors operating in
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underwater environments.

II. PROBLEM STATEMENT

In this work, we consider a low-cost AUV navigating
underwater equipped with a 2D forward looking sonar (FLS)
and a MEMS IMU and aim to efficiently localize the
vehicle only using these onboard sensor measurements. In
what follows, we briefly describe the IMU kinematic model
and the acoustic sonar measurement model within the EKF
framework, which will serve as the basis for our proposed
AINS.

A. IMU Kinematic Model

The IMU navigation state xIMU is given by [16]:

xIMU =
[

I
Gq̄

T bT
g

GvT
I bT

a
GpT

I

]T
(1)

where I
Gq̄ is the unit quaternion representing the rotation

from the global frame {G} to the current IMU frame {I}
[16]. bg and ba are gyroscope and accelerometer biases for
IMU measurements, respectively. GvI and GpI are the IMU
velocity and position in the global frame {G}.

The time evolution of the IMU is described as [16], [17]:

I
G

˙̄q(t) =
1

2
Ω(ωm(t)− bg(t)− ng(t))IGq̄(t) (2)

ḃg(t) = nωg(t) (3)
Gv̇I(t) = RT (IGq̄)(

Iam − ba(t)− na(t)) + Gg (4)
ḃa(t) = nωa(t) (5)

GṗI(t) = Gv̇I(t) (6)

where Ω(ω) =

[
−bω ×c ω
−ωT 0

]
, and R(IGq̄) represents the

rotation matrix corresponding to I
Gq̄. ωm and Iam are the

direct measurements of angular velocity and linear accelera-
tion from IMU, while ng and na denote the white Gaussian
noises that corrupt the corresponding measurements. nωg and
nωa represents white Gaussian noise vectors driving the IMU
biases bg and ba. Note that in real underwater system, the
gravity term Gg needs to be re-calibrated due to the buoyancy
of AUV.

B. Sonar Measurement Model

An imaging sonar (e.g., FLS) provides ranges and azimuth
angles to features in the underwater surroundings. The acous-
tic measurement model is depicted in Figure 1. We assume
a single feature fj has been observed and tracked in a set of
n sonar frames, where the set is denoted as Mj . We denote
fj in the i-th frame of Mj as Sipfj , and in the global frame
as Gpfj , then:

Sipfj =

 Sixj
Siyj
Sizj

 =

 r
(j)
Si

cosφ
(j)
Si

cos θ
(j)
Si

r
(j)
Si

sinφ
(j)
Si

cos θ
(j)
Si

r
(j)
Si

sin θ
(j)
Si

 (7)

Fig. 1. Illustration of the sonar measurement model: The feature fj in
the sonar frame {Si}, Sipfj , can be represented in a spherical coordinate

form: (r(j)Si
, φ(j)Si

, θ(j)Si
). Note that the range r(j)Si

and the azimuth angle

φ
(j)
Si

of feature fj can be derived from this sonar measurement, while the

elevation angle θ(j)Si
is lost in the 2D sonar image.

From the sonar measurement, we can get the range r(j)Si

and the azimuth angle φ(j)Si
measurements. Thus, the mea-

surement model can be described as:

z
(j)
Si

=

[
r
(j)
Si

φ
(j)
Si

]
+n

(j)
Si

=

 √Six2j + Siy2j + Siz2j

arctan
(

Siyj
Sixj

) +n
(j)
Si

(8)
where n

(j)
i is white Gaussian noise vectors with covariance

matrix R
(j)
Si

.

C. EKF with Stochastic Cloning

Determining the AUV’s poses is often performed as
SLAM problems and the EKF (or its variants) is frequently
used for solutions (e.g., see [4]). To better address the
nonlinear partially-observable sonar measurement [see (8)],
we propose to employ stochastic cloning [18] in the EKF
framework. Also, we advocate to perform online IMU-Sonar
extrinsic calibration, because it is often difficult (if not
possible) to pre-calibrate these sensors in an underwater
workspace.

Specifically, the state vector at time-step k contains the
current IMU state xIMUk

, the extrinsic calibration (i.e., 6
DoF rigid transformation) between IMU and sonar xcalib,
the cloned N latest IMU poses xIi , i = 1 . . . N and all the
detected features xf :

xk =
[

xT
IMUk

xT
calib xT

I1
. . . xT

IN
xT
f

]T
(9)

where xcalib =
[

S
I q̄

T IpT
S

]T
is the extrinsic IMU-Sonar

calibration; xIi =
[

Ii
G q̄

T GpT
Ii

]T
is the i-th cloned IMU

pose, and xf =
[

GpT
f1
· · · GpT

fNL

]T
contains all NL

features detected thus far.
The standard EKF is then employed to propagate and

update the state estimates and covariance [19]. In particular,
as a new sonar image is acquired and processed, the cur-
rent IMU pose estimate (IG ˆ̄q and Gp̂I ) and newly detected
features corresponding to this sonar image will be appended
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to the state vector and the covariance matrix is augmented
accordingly [18]:

Pk|k ←
[

I6(N+NL)+21

J

]
Pk|k

[
I6(N+NL)+21

J

]T
(10)

where the Jacobian J is given by (see [18]):

J =

[
I3×3 03×9 03×3 03×6(N+NL+1)

03×3 03×9 I3×3 03×6(N+NL+1)

]
Note that when cloning a new IMU pose, the oldest pose
will be removed if the total number of cloned states exceeds
the pre-defined threshold.

III. ACOUSTIC-INERTIAL ODOMETRY

It is clear from the preceding section that the system
in the SLAM formulation may suffer from ever-increasing
computational/storage complexity, as new features are being
included in the state vector. In particular, this easily occurs
when operating in large-scale environments. To address this
issue, inspired by visual-inertial odometry [20], we introduce
acoustic-inertial odometry for low-cost underwater naviga-
tion. In particular, we linearly marginalize out the acoustic
features to keep the state vector a constant size, while still
utilizing the information from sonar measurements of these
features to update the state estimates.

Specifically, based on the sonar measurement model (8),
the measurement residual for feature fj is given by:

r
(j)
Si

= z
(j)
Si
− ẑ

(j)
Si

(11)

Linearizing the above equation around the current state
estimates and feature estimates, the measurement residual
can be computed as:

r
(j)
Si
' H(j)

xSi
x̃∗ + H

(j)
fSi

Gp̃fj + n
(j)
Si

(12)

where H
(j)
xSi

and H
(j)
fSi

are the Jacobians corresponding to the

state vector x∗ =
[

xT
IMUk

xT
calib xT

I1
. . . xT

IN

]T
and the sonar feature fj respectively. By stacking all the
measurement residuals corresponding to the same feature fj
within the set of Mj , we have:

r(j) ' H(j)
x x̃∗ + H

(j)
f

Gp̃fj + n(j) (13)

Note that since features are not in the state vector, we
cannot perform EKF update based on this residual (13). To
overcome this issue, similar to [20], we multiply the left
nullspace U of the Jacobian matrix H

(j)
f to both sides (13),

and arrive at:

r(j)o = UT r(j) ' UTH(j)
x x̃∗ + UTn(j) (14)

= H(j)
o x̃∗ + n(j)

o (15)

Note that here we essentially have linearly marginalized
the features from the linearized measurement model. Thus,
eliminating the need to keep features in the state vector.

With the measurement residual formulation (14) for the j-
th single sonar feature, we can stack all the available feature

measurements, and thus, the stacked residual vector for all
features is written as:

r = Hx̃∗ + n (16)

With (16), the standard EKF can be used to update the state
estimate and covariance [19].

IV. DETERMINING ACOUSTIC FEATURE POSITIONS

In order to perform the linear marginalization for the
acoustic features as explained in the previous section, the
3D position estimate of the acoustic feature fj is needed
[see (13)]. Inspired by [21], we present in detail our method
of localizing acoustic features.

A. Linear Triangulation

We first formulate a linear triangulation to obtain the fea-
ture position estimates by transforming the nonlinear sonar
measurements (8) into linear equations. These triangulation
results will be used as the initial estimates for the iterative
nonlinear least-squares solver (see Section IV-B).

Specifically, let us first consider the bearing constraint.
With (7), it is not difficult to see that the bearing of feature
fj in {Si} can be written as:

b
(j)
Si

=

 cosφ
(j)
Si

cos θ
(j)
Si

sinφ
(j)
Si

cos θ
(j)
Si

sin θ
(j)
Si

 (17)

and its perpendicular vector can be computed as:

b
(j)⊥
Si

=
[
− sinφ

(j)
Si

cosφ
(j)
Si

0
]T

(18)

Assuming that {SN} is the first sonar frame of Mj and using
(17) and (18), we have:

pfj = pSi
+
[
R(Si

SN
q̄)
]T

Sipfj ⇒

R(Si

SN
q̄)pfj = b

(j)
Si
r
(j)
Si

+ R(Si

SN
q̄)pSi

⇒[
b
(j)⊥
Si

]T
R(Si

SN
q̄)pfj =

[
b
(j)⊥
Si

]T
R(Si

SN
q̄)pSi

(19)

where we have denoted pfj and pSi as SN pfj and SN pSi

for simplicity. We also employed the identities that Sipfj =

b
(j)
Si
r
(j)
Si

and
[
b
(j)⊥
Si

]T
b
(j)
Si

= 0. Now consider the range
constraint. The geometry of range constraint is shown in
Figure 2. Based on the law of cosine, we have:

(r
(j)
SN

)2 + ‖pSi‖
2 − (r

(j)
Si

)2 = 2r
(j)
SN
‖pSi‖

[
pSi

‖pSi‖

]T
b
(j)
SN

⇒ pT
Si

pfj =
1

2

[
(r

(j)
SN

)2 + ‖pSi
‖2 − (r

(j)
Si

)2
]

(20)

Since the feature fj has been observed and tracked in
the set of Mj frames, which contain n sonar images, we
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Fig. 2. Illustration of the geometry of the acoustic feature triangulation.

collect all the measurements from this set and formulate the
following linear least-squares equations:



[
b
(j)⊥
S1

]T
R(S1

SN
q̄)

pT
S1

...[
b
(j)⊥
Si

]T
R(Si

SN
q̄)

pT
Si

...[
b
(j)⊥
Sn

]T
R(Sn

SN
q̄)

pT
Sn


︸ ︷︷ ︸

B2n×3

pfj =



[
b
(j)⊥
S1

]T
R(S1

SN
q̄)pS1

1
2

[
(r

(j)
SN

)2 + ‖pS1
‖2 − (r

(j)
S1

)2
]

...[
b
(j)⊥
Si

]T
R(Si

SN
q̄)pSi

1
2

[
(r

(j)
SN

)2 + ‖pSi
‖2 − (r

(j)
Si

)2
]

...[
b
(j)⊥
n

]T
R(Sn

SN
q̄)pSn

1
2

[
(r

(j)
SN

)2 + ‖pSn
‖2 − (r

(j)
Sn

)2
]


︸ ︷︷ ︸

b2n×1

(21)

It is clear from (21) that each sonar measurement can provide
2 constraint equations. Therefore, if there are n (n ≥ 2)
measurements, we are able to determine the feature’s 3D
position in the local sonar frame. Thus, the solution of (21)
is given by the normal equation:

SN pfj = (BTB)−1BTb (22)

B. Nonlinear Least-Squares

Since the above linear triangulation does not take into
account the measurement uncertainty, the result would not
be optimal in the maximum likelihood sense. In order to
find the maximum likelihood estimate of the feature, we
formulate the equivalent (under mild assumptions) nonlinear
least-squares optimization to refine the triangulation result:

min
SN pfj

n∑
i=1

∣∣∣∣∣∣z(j)Si
− h(SNxj ,

SN yj ,
SN zj)

∣∣∣∣∣∣2
R

(j)
Si

(23)

The Gauss-Newton iterative algorithm can be employed to
solve this problem by using the triangulation solution (22)
as the initial guess.

C. Observability Analysis

A close inspection of matrix B in (22) reveals that it com-
prises three components: the bearing perpendicular vector
b
(j)⊥
Si

, the sensor rotation R(Si

SN
q̄), and the sensor translation

SN pSi
. Therefore, it would be important to examine how

the sensor motion impacts the feature triangulation, and
we need to find out what are the necessary conditions for
feasible feature triangulation. Compared to [15] which has
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Fig. 3. Simulated AUV’s trajectory and the feature map.

only qualitative analysis of 3 degenerate cases for ASFM,
we will provide more thorough analysis with a complete
mathematical proof for sonar feature triangulation.

Lemma 1: The effects of sensor motion on feature trian-
gulation are summarized in Table I.
• If the sonar rotates solely around z axis, moves along

only x axis or y axis, or undergoes any combination of
these three basic motion primitives, the feature cannot
be triangulated.

• If the sonar motion contains one of the other three
basic motion primitives (i.e., x rotation, y rotation and
z translation), the feature can be triangulated with at
least 2 or 3 measurements.

TABLE I
EFFECTS OF SONAR MOTION ON FEATURE TRIANGULATION

Sensor Motion Conditions for Feature Triangulation

pure x rotation φ
(j)
Si
6= 0 for at least 3 measurements

pure y rotation φ
(j)
Si
6= 0 for at least 3 measurements

pure z rotation Cannot triangulate

pure x translation Cannot triangulate

pure y translation Cannot triangulate

pure z translation φ
(j)
Si
6= 0 for at least 2 measurements

Proof: See Appendix.

V. SIMULATION RESULTS

To validate our proposed AINS algorithm, we perform 50
Monte-Carlo (MC) simulations under various conditions. For
the results presented in this section, we consider an AUV that
randomly moves in the environments where point features
are also randomly populated. In particular, the AUV is
performing a general motion to avoid unobservable motions
and all these point features are assumed to be static. Since
features are randomly generated, some of them might be
clustered together or spread out. Figure 3 shows the vehicle’s
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TABLE II
SIMULATION SETUP PARAMETERS

Parameter Value

Sonar Range (m) [0.1, 7]
Sonar Azimuth FOV (deg) [-60,60]
Sonar Elevation FOV (deg) [-10,10]
Sonar Angular Resolution (deg) 1
Sonar Range Resolution (m) 0.01
Calib Orientation Error (deg) [3 -3 0]
Calib Orientation σ (deg) 4.58
Calib Position Error (m) [0 0 0.01]
Calib position σ (m) 0.2
IMU rotation σ (rad/s) 1.1220× 10−4

IMU rotation bias σ (rad/s) 5.6323× 10−5

IMU acc. σ (m/s2) 5.0119× 10−4

IMU acc. bias σ (m/s2) 3.9811× 10−5

Monte-Carlo Trials 50

trajectory and the feature map. All pertinent parameters of
the simulation setup are summarized in Table II. It should be
pointed out that the sensor parameters used in this test are
realistic. The performance metrics used are the root mean
squared error (RMSE) and the normalized estimation error
squared (NEES) [19]. The former quantifies the estimation
accuracy while the latter is the standard criterion for estima-
tion consistency.

In particular, Figure 4 (a) and (d) show the average RMSE
of MC simulations for the vehicle’s orientation and position.
Note that the total distance travelled is about 40 meters, while
the average position RMSE is about 1 meter. This indicates
that the navigation error of the proposed AINS is about
2.5% of the distance traveled. Figure 4 (c) and (f) depicts
the average NEES for the vehicle’s orientation and position.
Figure 5 shows the estimation errors and the corresponding
3σ bounds that are obtained from one typical trial of the 50
MC simulations. As evident from these results, the proposed
AINS achieves reasonably consistent performance.

Figure 4 (b) and (e) show the average RMSE of calibration
parameters (rotation and translation). The RMSE for calibra-
tion rotation decreases quickly within the first 10 seconds
and then stays at a low error value. Similarly, the average
RMSE for calibration translation converges to a small value.
This implies that the online calibration achieves a better
accuracy than the initial estimate which is typically obtained
by manual measures in practice. Moreover, Figure 6 shows
estimate errors and their 3σ bounds of the online calibration
for a typical trial. These results show that the online extrinsic
calibration for IMU and sonar reaches steady state quickly
provided good initial estimates. Thus in practice, we may
stop performing online calibration after a short period of
time once its estimate becomes matured in order to save
resources.

VI. CONCLUSIONS

We have developed a low-cost acoustic-inertial navigation
system (AINS) that efficiently fuses acoustic and inertial

measurements within a tightly-coupled, stochastic cloning-
based EKF framework. In particular, we linearly marginalize
out the acoustic features from the state while still utilizing
all the corresponding sonar measurements. As a result,
the computational complexity of the proposed approach is
independent from the scale of the environment. We have also
introduced an acoustic feature linear triangulation to generate
initial estimates for the nonlinear least-squares based feature
localization. A rigorous, detailed observability analysis has
been performed to better understand the impact of the sensor
motion on the feature triangulation. Additionally, motivated
by the practical pre-calibration challenges, the proposed
AINS advocates online sonar-IMU extrinsic calibration.

APPENDIX

PROOF OF LEMMA 1
We first introduce the following notations that will be

useful for the ensuing analysis:

R(Si

SN
q̄) =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 (24)

SN pSi
=

[
∆xSi

∆ySi
∆zSi

]T
(25)

SN pfj =
[
xj yj zj

]T
(26)

1) Pure rotation around x axis: If the sonar only rotates
around the x axis of the local frame, then the rotation matrix
Si

SN
R and the translation vector SN pSi

become:

R(Si
SN

q̄) =

 1 0 0
0 r22 r23
0 r32 r33

 , SNpSi =

 ∆xSi

∆ySi

∆zSi

 =

 0
0
0


This yields:[

b
(j)⊥
Si

]T
R(Si

SN
q̄)SN pfj =[

− sinφ
(j)
Si

r22 cosφ
(j)
Si

r23 cosφ
(j)
Si

]
SN pfj

(27)

Thus, from (21), we have:

B =


...

...
...

− sinφ
(j)
Si

r22 cosφ
(j)
Si

r23 cosφ
(j)
Si

0 0 0
...

...
...

 (28)

Clearly, in this case, at least 3 measurements of feature fj
with φ(j)Si

6= 0 are needed for the triangulation when the sonar
is purely rotating around its x axis.

2) Pure rotation around y axis: Similarly, if the sonar
only rotates around the y axis, then we have:

R(Si

SN
q̄) =

 r11 0 r13
0 1 0
r31 0 r33

 , SN pSi
=

 0
0
0



B =


...

...
...

−r11 sinφ
(j)
Si

cosφ
(j)
Si

−r13 sinφ
(j)
Si

0 0 0
...

...
...

 (29)
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Fig. 4. Average RMSE and NEES of Monte-Carlo simulations for the AUV’s position and orientation.
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Fig. 5. Estimation errors vs. 3σ bounds. Note that these results are obtained for one typical realization of the 50 Monte-Carlo simulations.

0 20 40 60 80 100

time (s)

-20

0

20

δ
θ

x
c
a

lib
 (

d
e

g
)

0 20 40 60 80 100

time (s)

-20

0

20

δ
θ

y
c
a

lib
 (

d
e

g
)

0 20 40 60 80 100

time (s)

-20

0

20

δ
θ

z
c
a

lib
 (

d
e

g
)

0 10 20 30 40 50 60

time (s)

-0.5

0

0.5

δ
 p

x
c
a

lib
 (

m
)

0 10 20 30 40 50 60

time (s)

-0.5

0

0.5

δ
 p

y
c
a

lib
 (

m
)

0 10 20 30 40 50 60

time (s)

-0.5

0

0.5

δ
 p

z
c
a

lib
 (

m
)

error

3σ error

(b)(a)

Calib Position Error (m)Calib Orientation Error (deg)

Fig. 6. Online calibration errors vs. 3σ bounds from one typical run of the 50 Monte-Carlo simulations.
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In this case at least 3 measurements of feature fj with
φ
(j)
Si
6= 0 are needed for the triangulation.

3) Pure rotation around z axis: If the sonar only rotates
around the z axis of the local frame, then we have:

R(Si

SN
q̄) =

 r11 r12 0
r21 r22 0
0 0 1

 , SN pSi
=

 0
0
0



B =


...

...
...

−r11 sinφ
(j)
Si

+ r21 cosφ
(j)
Si

−r12 sinφ
(j)
Si

+ r22 cosφ
(j)
Si

0
0 0 0
...

...
...


(30)

In this case, we notice that no matter how many mea-
surements are acquired for feature fj , Rank(B) ≤ 2. So
BTB will always be singular and the feature cannot be
triangulated.

4) Pure translation along x axis: If the sonar only has
translations along the x axis of the local frame, then we
have:

R(Si

SN
q̄) =

 1 0 0
0 1 0
0 0 1

 , SN pSi
=

 ∆xSi

0
0



B =


...

...
...

− sinφ
(j)
Si

cosφ
(j)
Si

0
∆xSi

0 0
...

...
...

 (31)

In this case, Rank(B) ≤ 2. So the feature cannot be trian-
gulated, no matter how many measurements are acquired.

5) Pure translation along y axis: If the sonar only has
translations along the y axis of the local frame, then we
have:

R(Si

SN
q̄) =

 1 0 0
0 1 0
0 0 1

 , SN pSi
=

 0
∆ySi

0



B =


...

...
...

− sinφ
(j)
Si

cosφ
(j)
Si

0
0 ∆ySi

0
...

...
...

 (32)

In this case, Rank(B) ≤ 2. So the feature cannot be trian-
gulated, no matter how many measurements are acquired.

6) Pure translation along z axis: If the sonar only has
translations along the z axis of the local frame, then we
have:

R(Si

SN
q̄) =

 1 0 0
0 1 0
0 0 1

 , SN pSi =

 0
0

∆zSi



B =


...

...
...

− sinφ
(j)
Si

cosφ
(j)
Si

0
0 0 ∆zSi

...
...

...

 (33)

In this case, at least 2 measurements are needed for feature
fj with φ(j)Si

6= 0 for the triangulation.
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